基于Python的手环睡眠检测系统的开发思路和关键步骤

以下是基于Python的手环睡眠检测系统的开发思路和关键步骤,我将分模块说明并给出示例代码:


一、系统核心模块组成

  1. 数据采集模块

    • 加速度计数据(活动频率)
    • 心率传感器数据
    • 皮肤电反应(可选)
  2. 数据处理模块

    • 噪声过滤
    • 特征提取(活动量/心率变异性)
  3. 算法模块

    • 睡眠阶段分类(清醒/浅睡/深睡/REM)
    • 机器学习模型(如随机森林)
  4. 可视化模块

    • 睡眠质量报告
    • 实时数据图表

二、Python实现代码示例

1. 模拟传感器数据采集
import numpy as np
from datetime import datetime, timedelta

def simulate_sensor_data(duration_hours=8):
    """模拟生成8小时传感器数据"""
    timestamps = [datetime.now() + timedelta(minutes=i) for i in range(60*duration_hours)]
    accel = np.abs(np.random.normal(0, 0.5, len(timestamps)))  # 加速度模拟
    heart_rate = 60 + 10*np.sin(np.linspace(0, 4*np.pi, len(timestamps)))  # 心率模拟
    return timestamps, accel, heart_rate
2. 特征提取与处理
from scipy.signal import butter, filtfilt

def process_data(accel, heart_rate, fs=1/60):
    """数据处理流程"""
    # 低通滤波去噪 (截止频率0.1Hz)
    b, a = butter(4, 0.1/(0.5*fs), 'low')
    filtered_accel = filtfilt(b, a, accel)
    
    # 计算活动量指标
    activity = np.convolve(filtered_accel, np.ones(30)/30, mode='same')  # 30分钟滑动平均
    
    # 心率变异性(标准差)
    hrv = np.std(heart_rate)
    
    return activity, hrv
3. 睡眠阶段分类算法
from sklearn.ensemble import RandomForestClassifier
import joblib

# 示例训练数据(需替换为真实数据)
X_train = np.random.rand(100, 3)  # 特征:活动量/心率/HRV
y_train = np.random.randint(0, 3, 100)  # 标签:0-清醒,1-浅睡,2-深睡

def train_model():
    model = RandomForestClassifier()
    model.fit(X_train, y_train)
    joblib.dump(model, 'sleep_model.pkl')  # 保存模型
    return model

def predict_sleep_stage(activity, heart_rate, hrv):
    model = joblib.load('sleep_model.pkl')
    features = np.array([[np.mean(activity), np.mean(heart_rate), hrv]])
    return model.predict(features)
4. 可视化输出
import matplotlib.pyplot as plt

def visualize_sleep(timestamps, stages):
    plt.figure(figsize=(10,4))
    plt.plot(timestamps, stages, marker='o', linestyle='--')
    plt.yticks([0,1,2,3], ['Awake', 'Light', 'Deep', 'REM'])
    plt.title('Sleep Stage Analysis')
    plt.grid(True)
    plt.show()

三、系统工作流程

  1. 数据采集

    timestamps, accel, hr = simulate_sensor_data()
    
  2. 特征提取

    activity, hrv = process_data(accel, hr)
    
  3. 预测睡眠阶段

    stages = predict_sleep_stage(activity, hr, hrv)
    
  4. 生成报告

    visualize_sleep(timestamps[:len(stages)], stages)
    

四、优化方向建议

  1. 数据增强

    • 使用公开数据集(如SHHS睡眠数据库)训练模型
    • 添加环境光传感器数据
  2. 实时处理

    • 采用滑动窗口技术(如5分钟窗口实时更新)
  3. 设备对接

    • 通过蓝牙协议(pybluez库)连接真实手环
    • 使用ADXL345等传感器开发板模拟硬件
  4. 部署优化

    • 使用Cython加速关键算法
    • 移植到MicroPython用于嵌入式设备

五、典型输出示例

睡眠质量报告(2023-12-01):
总睡眠时间: 7.2小时
深睡比例: ████████ 35%
REM睡眠: █████ 20%
睡眠效率: 89%
建议:保持规律作息时间

通过这个框架,您可以快速搭建原型系统,后续再逐步接入真实硬件和优化算法参数。需要特别注意传感器采样频率的选择(通常1-50Hz)与能耗的平衡。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值