pytorch、tensorflow对比学习—功能组件(激活函数、模型层、损失函数)

功能组件(激活函数、模型层、损失函数)

前言

本文是《pytorch-tensorflow-Comparative study》,pytorch和tensorflow对比学习专栏,第三章——功能组件。(其中的激活函数、模型层、损失函数部分)

虽然说这两个框架在语法和接口的命名上有很多地方是不同的,但是深度学习的建模过程确实基本上都是一个套路的。

所以该笔记的笔记方式是:在使用相同的处理功能模块上,对比记录pytorch和tensorflow两者的API接口,和语法。
在这里插入图片描述
1,有利于深入理解深度学习建模过程流程。

2,有利于理解pytorch,和tensorflow设计上的不同,更加灵活的使用在自己的项目中。

3,有利于深入理解各个功能模块的使用。

本章节主要对比学习pytorch 和tensorflow有关功能组件。(其中的激活函数、模型层、损失函数部分)

在这里插入图片描述

前面我们介绍了Pytorch的张量的结构操作和数学运算中的一些常用API。

利用这些张量的API我们可以构建出神经网络相关的组件(如激活函数,模型层,损失函数,优化器)。

Pytorch中:和神经网络相关的功能组件大多都封装在 torch.nn模块下。这些功能组件的绝大部分既有函数形式实现,也有类形式实现。

​ 1,nn.functional(一般引入后改名为F)有各种功能组件的函数实现。

​ 2,便于对参数进行管理,通过继承 nn.Module 转换成为类的实现形式,并直接封装在 nn 模块下。(建议)

tensorflow中:和神经网络相关的功能组件大多通过继承tf.keras子模块实现。所以tensorflow实现的功能组件大多数是类的形式实现的。
在这里插入图片描述

激活函数

激活函数在深度学习中扮演着非常重要的角色,它给网络赋予了非线性,从而使得神经网络能够拟合任意复杂的函数。

如果没有激活函数,无论多复杂的网络,都等价于单一的线性变换,无法对非线性函数进行拟合。

目前,深度学习中最流行的激活函数为 relu, 但也有些新推出的激活函数,例如 swish、GELU 据称效果优于relu激活函数。

在这里插入图片描述

常用激活函数

**sigmoid:**将实数压缩到0到1之间,一般只在二分类的最后输出层使用。主要缺陷为存在梯度消失问题,计算复杂度高,输出不以0为中心。
在这里插入图片描述
softmax:sigmoid的多分类扩展,一般只在多分类问题的最后输出层使用。
在这里插入图片描述
**tanh:**将实数压缩到-1到1之间,输出期望为0。主要缺陷为存在梯度消失问题,计算复杂度高。
在这里插入图片描述
**relu:**修正线性单元,最流行的激活函数。一般隐藏层使用。主要缺陷是:输出不以0为中心,输入小于0时存在梯度消失问题(死亡relu)。
在这里插入图片描述
**leaky_relu:**对修正线性单元的改进,解决了死亡relu问题。
在这里插入图片描述
**elu:**指数线性单元。对relu的改进,能够缓解死亡relu问题。
在这里插入图片描述
**selu:**扩展型指数线性单元。在权重用tf.keras.initializers.lecun_normal初始化前提下能够对神经网络进行自归一化。不可能出现梯度爆炸或者梯度消失问题。需要和Dropout的变种AlphaDropout一起使用。

**swish:**自门控激活函数。谷歌出品,相关研究指出用swish替代relu将获得轻微效果提升。

**gelu:**高斯误差线性单元激活函数。在Transformer中表现最好。tf.nn模块尚没有实现该函数。
在这里插入图片描述

激活函数实现

在这里插入图片描述

pytorch

激活函数的使用方法有两种,分别是:

import torch.nn.functional as F
"""
F.relu
F.sigmoid
F.tanh
F.softmax
"""
out = F.relu(input)
import torch.nn as nn
"""
nn.ReLU
nn.Sigmoid
nn.Tanh
nn.Softmax
"""
nn.ReLU()

其实这两种方法都是使用relu激活,只是使用的场景不一样,F.relu()是函数调用,一般使用在foreward函数里。而nn.ReLU()是模块调用,一般在定义网络层的时候使用。(nn.ReLU(),通过继承 nn.Module 转换成为类的实现形式,并直接封装在 nn 模块下。)

当用print(net)输出时,会有nn.ReLU()层,而F.ReLU()是没有输出的。

import torch.nn as nn
import torch.nn.functional as F

class NET1(nn.Module):
    def __init__(self):
        super(NET1, self).__init__()
        self.conv = nn.Conv2d(3, 16, 3, 1, 1)
        self.bn = nn.BatchNorm2d(16)
        self.relu = nn.ReLU()  # 模块的激活函数

    def forward(self, x):
        out = self.conv(x)
        x = self.bn(x)
        out = self.relu()
        return out


class NET2(nn.Module):
    def __init__(self):
        super(NET2, self).__init__()
        self.conv = nn.Conv2d(3, 16, 3, 1, 1)
        self.bn = nn.BatchNorm2d(16)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        out = F.relu(x)  # 函数的激活函数
        return out

net1 = NET1()
net2 = NET2()
print(net1)
print(net2)

tensorflow

在keras模型中使用激活函数一般有两种方式,一种是作为某些层的activation参数指定,另一种是显式添加layers.Activation激活层。

import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras import layers,models

tf.keras.backend.clear_session()

model = models.Sequential()
model.add(layers.Dense(32,input_shape = (None,16),activation = tf.nn.relu)) #通过activation参数指定
model.add(layers.Dense(10))
"""
tf.nn.sigmoid
tf.nn.softmax
tf.nn.tanh
tf.nn.relu
tf.nn.leaky_relu
tf.nn.elu
tf.nn.selu
tf.nn.swish
gelu
"""
model.add(layers.Activation(tf.nn.softmax))  # 显式添加layers.Activation激活层
model.summary()

模型层layers

深度学习模型一般由各种模型层组合而成。

**pytroch中:**torch.nn中内置了非常丰富的各种模型层。它们都属于nn.Module的子类,具备参数管理功能。

例如:

  • nn.Linear, nn.Flatten, nn.Dropout, nn.BatchNorm2d
  • nn.Conv2d,nn.AvgPool2d,nn.Conv1d,nn.ConvTranspose2d
  • nn.Embedding,nn.GRU,nn.LSTM
  • nn.Transformer

如果这些内置模型层不能够满足需求,我们也可以通过继承nn.Module基类构建自定义的模型层。

实际上,pytorch不区分模型和模型层,都是通过继承nn.Module进行构建。

因此,我们只要继承nn.Module基类并实现forward方法即可自定义模型层。

**tensorflow中:**tf.keras.layers内置了非常丰富的各种功能的模型层。例如,

layers.Dense,layers.Flatten,layers.Input,layers.DenseFeature,layers.Dropout

layers.Conv2D,layers.MaxPooling2D,layers.Conv1D

layers.Embedding,layers.GRU,layers.LSTM,layers.Bidirectional等等。

如果这些内置模型层不能够满足需求,我们也可以通过编写tf.keras.Lambda匿名模型层或继承tf.keras.layers.Layer基类构建自定义的模型层。

其中tf.keras.Lambda匿名模型层只适用于构造没有学习参数的模型层。
在这里插入图片描述

内置模型层

一些常用的内置模型层简单介绍如下。

基础层

名称pytorchtensorflow
输入层Input
全连接层/密集连接层nn.LinearDense
特征列接入层DenseFeature
压平层nn.FlattenFlatten
随机置零层nn.DropoutDropout
nn.Dropout2dSpatialDropout2D
nn.Dropout3d
批标准化层nn.BatchNorm1dBatchNormalization
nn.BatchNorm2d
nn.BatchNorm3d
限幅层nn.Threshold
常数填充层nn.ConstantPad2d
复制填充层nn.ReplicationPad1d
零值填充层nn.ZeroPad2d
加法层Add
减法层Subtract
取最大值层Maximum
取最小值层Minimum
形状重塑层Reshape
拼接层Concatenate
组归一化nn.GroupNorm
层归一化nn.LayerNorm
样本归一化nn.InstanceNorm2d

相关名词解释:

pytorch

  • nn.Linear:全连接层。参数个数 = 输入层特征数× 输出层特征数(weight)+ 输出层特征数(bias)
  • nn.Flatten:压平层,用于将多维张量样本压成一维张量样本。
  • nn.BatchNorm1d:一维批标准化层。通过线性变换将输入批次缩放平移到稳定的均值和标准差。可以增强模型对输入不同分布的适应性,加快模型训练速度,有轻微正则化效果。一般在激活函数之前使用。可以用afine参数设置该层是否含有可以训练的参数。
  • nn.BatchNorm2d:二维批标准化层。
  • nn.BatchNorm3d:三维批标准化层。
  • nn.Dropout:一维随机丢弃层。一种正则化手段。
  • nn.Dropout2d:二维随机丢弃层。
  • nn.Dropout3d:三维随机丢弃层。
  • nn.Threshold:限幅层。当输入大于或小于阈值范围时,截断之。
  • nn.ConstantPad2d: 二维常数填充层。对二维张量样本填充常数扩展长度。
  • nn.ReplicationPad1d: 一维复制填充层。对一维张量样本通过复制边缘值填充扩展长度。
  • nn.ZeroPad2d:二维零值填充层。对二维张量样本在边缘填充0值.
  • nn.GroupNorm:组归一化。一种替代批归一化的方法,将通道分成若干组进行归一。不受batch大小限制,据称性能和效果都优于BatchNorm。
  • nn.LayerNorm:层归一化。较少使用。
  • nn.InstanceNorm2d: 样本归一化。较少使用。

tensorflow

  • Dense:密集连接层。参数个数 = 输入层特征数× 输出层特征数(weight)+ 输出层特征数(bias)
  • Activation:激活函数层。一般放在Dense层后面,等价于在Dense层中指定activation。
  • Dropout:随机置零层。训练期间以一定几率将输入置0,一种正则化手段。
  • BatchNormalization:批标准化层。通过线性变换将输入批次缩放平移到稳定的均值和标准差。可以增强模型对输入不同分布的适应性,加快模型训练速度,有轻微正则化效果。一般在激活函数之前使用。
  • SpatialDropout2D:空间随机置零层。训练期间以一定几率将整个特征图置0,一种正则化手段,有利于避免特征图之间过高的相关性。
  • Input:输入层。通常使用Functional API方式构建模型时作为第一层。
  • DenseFeature:特征列接入层,用于接收一个特征列列表并产生一个密集连接层。
  • Flatten:压平层,用于将多维张量压成一维。
  • Reshape:形状重塑层,改变输入张量的形状。
  • Concatenate:拼接层,将多个张量在某个维度上拼接。
  • Add:加法层。
  • Subtract: 减法层。
  • Maximum:取最大值层。
  • Minimum:取最小值层。

卷积网络相关层

名称pytorchtensorflow
普通一维卷积nn.Conv1dConv1D
普通二维卷积nn.Conv2dConv2D
普通三维卷积nn.Conv3dConv3D
二维深度可分离卷积层SeparableConv2D
二维深度卷积层DepthwiseConv2D
二维卷积转置层nn.ConvTranspose2dConv2DTranspose
二维局部连接层LocallyConnected2D
一维最大池化nn.MaxPool1dMaxPool1D
二维最大池化nn.MaxPool2dMaxPool2D
三维最大池化nn.MaxPool3dMaxPool3D
二维平均池化层nn.AvgPool2dAveragePooling2D
二维自适应最大池化nn.AdaptiveMaxPool2d
二维分数最大池化nn.FractionalMaxPool2d
全局最大池化层GlobalMaxPool2D
全局平均池化层GlobalAvgPool2D
二维自适应平均池化nn.AdaptiveAvgPool2d
上采样层nn.Upsample
滑动窗口提取层nn.Unfold
逆滑动窗口提取层nn.Fold

相关名词解释:

pytorch

  • nn.Conv1d:普通一维卷积,常用于文本。参数个数 = 输入通道数×卷积核尺寸(如3)×卷积核个数 + 卷积核尺寸(如3)
  • nn.Conv2d:普通二维卷积,常用于图像。参数个数 = 输入通道数×卷积核尺寸(如3乘3)×卷积核个数 + 卷积核尺寸(如3乘3) 通过调整dilation参数大于1,可以变成空洞卷积,增大卷积核感受野。 通过调整groups参数不为1,可以变成分组卷积。分组卷积中不同分组使用相同的卷积核,显著减少参数数量。 当groups参数等于通道数时,相当于tensorflow中的二维深度卷积层tf.keras.layers.DepthwiseConv2D。 利用分组卷积和1乘1卷积的组合操作,可以构造相当于Keras中的二维深度可分离卷积层tf.keras.layers.SeparableConv2D。
  • nn.Conv3d:普通三维卷积,常用于视频。参数个数 = 输入通道数×卷积核尺寸(如3乘3乘3)×卷积核个数 + 卷积核尺寸(如3乘3乘3) 。
  • nn.MaxPool1d: 一维最大池化。
  • nn.MaxPool2d:二维最大池化。一种下采样方式。没有需要训练的参数。
  • nn.MaxPool3d:三维最大池化。
  • nn.AdaptiveMaxPool2d:二维自适应最大池化。无论输入图像的尺寸如何变化,输出的图像尺寸是固定的。 该函数的实现原理,大概是通过输入图像的尺寸和要得到的输出图像的尺寸来反向推算池化算子的padding,stride等参数。
  • nn.FractionalMaxPool2d:二维分数最大池化。普通最大池化通常输入尺寸是输出的整数倍。而分数最大池化则可以不必是整数。分数最大池化使用了一些随机采样策略,有一定的正则效果,可以用它来代替普通最大池化和Dropout层。
  • nn.AvgPool2d:二维平均池化。
  • nn.AdaptiveAvgPool2d:二维自适应平均池化。无论输入的维度如何变化,输出的维度是固定的。
  • nn.ConvTranspose2d:二维卷积转置层,俗称反卷积层。并非卷积的逆操作,但在卷积核相同的情况下,当其输入尺寸是卷积操作输出尺寸的情况下,卷积转置的输出尺寸恰好是卷积操作的输入尺寸。在语义分割中可用于上采样。
  • nn.Upsample:上采样层,操作效果和池化相反。可以通过mode参数控制上采样策略为"nearest"最邻近策略或"linear"线性插值策略。
  • nn.Unfold:滑动窗口提取层。其参数和卷积操作nn.Conv2d相同。实际上,卷积操作可以等价于nn.Unfold和nn.Linear以及nn.Fold的一个组合。 其中nn.Unfold操作可以从输入中提取各个滑动窗口的数值矩阵,并将其压平成一维。利用nn.Linear将nn.Unfold的输出和卷积核做乘法后,再使用 nn.Fold操作将结果转换成输出图片形状。
  • nn.Fold:逆滑动窗口提取层。

tensorflow

  • Conv1D:普通一维卷积,常用于文本。参数个数 = 输入通道数×卷积核尺寸(如3)×卷积核个数
  • Conv2D:普通二维卷积,常用于图像。参数个数 = 输入通道数×卷积核尺寸(如3乘3)×卷积核个数
  • Conv3D:普通三维卷积,常用于视频。参数个数 = 输入通道数×卷积核尺寸(如3乘3乘3)×卷积核个数
  • SeparableConv2D:二维深度可分离卷积层。不同于普通卷积同时对区域和通道操作,深度可分离卷积先操作区域,再操作通道。即先对每个通道做独立卷积操作区域,再用1乘1卷积跨通道组合操作通道。参数个数 = 输入通道数×卷积核尺寸 + 输入通道数×1×1×输出通道数。深度可分离卷积的参数数量一般远小于普通卷积,效果一般也更好。
  • DepthwiseConv2D:二维深度卷积层。仅有SeparableConv2D前半部分操作,即只操作区域,不操作通道,一般输出通道数和输入通道数相同,但也可以通过设置depth_multiplier让输出通道为输入通道的若干倍数。输出通道数 = 输入通道数 × depth_multiplier。参数个数 = 输入通道数×卷积核尺寸× depth_multiplier。
  • Conv2DTranspose:二维卷积转置层,俗称反卷积层。并非卷积的逆操作,但在卷积核相同的情况下,当其输入尺寸是卷积操作输出尺寸的情况下,卷积转置的输出尺寸恰好是卷积操作的输入尺寸。
  • LocallyConnected2D: 二维局部连接层。类似Conv2D,唯一的差别是没有空间上的权值共享,所以其参数个数远高于二维卷积。
  • MaxPool2D: 二维最大池化层。也称作下采样层。池化层无可训练参数,主要作用是降维。
  • AveragePooling2D: 二维平均池化层。
  • GlobalMaxPool2D: 全局最大池化层。每个通道仅保留一个值。一般从卷积层过渡到全连接层时使用,是Flatten的替代方案。
  • GlobalAvgPool2D: 全局平均池化层。每个通道仅保留一个值。

循环网络相关层

名称pytrochtensorflow
嵌入层nn.EmbeddingEmbedding
长短记忆循环网络层nn.LSTMLSTM
门控循环网络层nn.GRUGRU
简单循环网络层nn.RNNSimpleRNN
卷积长短记忆循环网络层ConvLSTM2D
双向循环网络包装器Bidirectional
RNN基本层RNN
长短记忆循环网络单元nn.LSTMCellLSTMCell
门控循环网络单元nn.GRUCellGRUCell
简单循环网络单元nn.RNNCellSimpleRNNCell
抽象RNN单元AbstractRNNCell

相关名词解释:

pytorch

  • nn.Embedding:嵌入层。一种比Onehot更加有效的对离散特征进行编码的方法。一般用于将输入中的单词映射为稠密向量。嵌入层的参数需要学习。
  • nn.LSTM:长短记忆循环网络层【支持多层】。最普遍使用的循环网络层。具有携带轨道,遗忘门,更新门,输出门。可以较为有效地缓解梯度消失问题,从而能够适用长期依赖问题。设置bidirectional = True时可以得到双向LSTM。需要注意的时,默认的输入和输出形状是(seq,batch,feature), 如果需要将batch维度放在第0维,则要设置batch_first参数设置为True。
  • nn.GRU:门控循环网络层【支持多层】。LSTM的低配版,不具有携带轨道,参数数量少于LSTM,训练速度更快。
  • nn.RNN:简单循环网络层【支持多层】。容易存在梯度消失,不能够适用长期依赖问题。一般较少使用。
  • nn.LSTMCell:长短记忆循环网络单元。和nn.LSTM在整个序列上迭代相比,它仅在序列上迭代一步。一般较少使用。
  • nn.GRUCell:门控循环网络单元。和nn.GRU在整个序列上迭代相比,它仅在序列上迭代一步。一般较少使用。
  • nn.RNNCell:简单循环网络单元。和nn.RNN在整个序列上迭代相比,它仅在序列上迭代一步。一般较少使用。

tensorflow

  • Embedding:嵌入层。一种比Onehot更加有效的对离散特征进行编码的方法。一般用于将输入中的单词映射为稠密向量。嵌入层的参数需要学习。
  • LSTM:长短记忆循环网络层。最普遍使用的循环网络层。具有携带轨道,遗忘门,更新门,输出门。可以较为有效地缓解梯度消失问题,从而能够适用长期依赖问题。设置return_sequences = True时可以返回各个中间步骤输出,否则只返回最终输出。
  • GRU:门控循环网络层。LSTM的低配版,不具有携带轨道,参数数量少于LSTM,训练速度更快。
  • SimpleRNN:简单循环网络层。容易存在梯度消失,不能够适用长期依赖问题。一般较少使用。
  • ConvLSTM2D:卷积长短记忆循环网络层。结构上类似LSTM,但对输入的转换操作和对状态的转换操作都是卷积运算。
  • Bidirectional:双向循环网络包装器。可以将LSTM,GRU等层包装成双向循环网络。从而增强特征提取能力。
  • RNN:RNN基本层。接受一个循环网络单元或一个循环单元列表,通过调用tf.keras.backend.rnn函数在序列上进行迭代从而转换成循环网络层。
  • LSTMCell:LSTM单元。和LSTM在整个序列上迭代相比,它仅在序列上迭代一步。可以简单理解LSTM即RNN基本层包裹LSTMCell。
  • GRUCell:GRU单元。和GRU在整个序列上迭代相比,它仅在序列上迭代一步。
  • SimpleRNNCell:SimpleRNN单元。和SimpleRNN在整个序列上迭代相比,它仅在序列上迭代一步。
  • AbstractRNNCell:抽象RNN单元。通过对它的子类化用户可以自定义RNN单元,再通过RNN基本层的包裹实现用户自定义循环网络层。

Transformer相关层

名称pytorchtensorflow
Dot-product类型注意力机制层Attention
Additive类型注意力机制层AdditiveAttention
时间分布包装器TimeDistributed
Transformer网络结构nn.Transformer
Transformer编码器结构nn.TransformerEncoder
Transformer解码器结构nn.TransformerDecoder
Transformer的编码器层nn.TransformerEncoderLayer
Transformer的解码器层nn.TransformerDecoderLayer
多头注意力层nn.MultiheadAttention

相关名词解释:

pytorch

  • nn.Transformer:Transformer网络结构。Transformer网络结构是替代循环网络的一种结构,解决了循环网络难以并行,难以捕捉长期依赖的缺陷。它是目前NLP任务的主流模型的主要构成部分。Transformer网络结构由TransformerEncoder编码器和TransformerDecoder解码器组成。编码器和解码器的核心是MultiheadAttention多头注意力层。
  • nn.TransformerEncoder:Transformer编码器结构。由多个 nn.TransformerEncoderLayer编码器层组成。
  • nn.TransformerDecoder:Transformer解码器结构。由多个 nn.TransformerDecoderLayer解码器层组成。
  • nn.TransformerEncoderLayer:Transformer的编码器层。
  • nn.TransformerDecoderLayer:Transformer的解码器层。
  • nn.MultiheadAttention:多头注意力层。

tensorflow

  • Attention:Dot-product类型注意力机制层。可以用于构建注意力模型。
  • AdditiveAttention:Additive类型注意力机制层。可以用于构建注意力模型。
  • TimeDistributed:时间分布包装器。包装后可以将Dense、Conv2D等作用到每一个时间片段上。

自定义模型层

如果内置模型层不能够满足需求,我们也可以通过继承nn.Module(pytorch)或者keras.layers(tensorflow)基类构建自定义的模型层。

pytorch

实际上,pytorch不区分模型和模型层,都是通过继承nn.Module进行构建。

因此,我们只要继承nn.Module基类并实现forward方法即可自定义模型层。

下面是Pytorch的nn.Linear层的源码,我们可以仿照它来自定义模型层。

import torch
from torch import nn
import torch.nn.functional as F


class Linear(nn.Module):
    __constants__ = ['in_features', 'out_features']

    def __init__(self, in_features, out_features, bias=True):
        super(Linear, self).__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.weight = nn.Parameter(torch.Tensor(out_features, in_features))
        if bias:
            self.bias = nn.Parameter(torch.Tensor(out_features))
        else:
            self.register_parameter('bias', None)
        self.reset_parameters()

    def reset_parameters(self):
        nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
        if self.bias is not None:
            fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight)
            bound = 1 / math.sqrt(fan_in)
            nn.init.uniform_(self.bias, -bound, bound)

    def forward(self, input):
        return F.linear(input, self.weight, self.bias)

    def extra_repr(self):
        return 'in_features={}, out_features={}, bias={}'.format(
            self.in_features, self.out_features, self.bias is not None
        )
linear = nn.Linear(20, 30)
inputs = torch.randn(128, 20)
output = linear(inputs)
print(output.size())
# torch.Size([128, 30])

tensorflow

如果自定义模型层没有需要被训练的参数,一般推荐使用Lamda层实现。

如果自定义模型层有需要被训练的参数,则可以通过对Layer基类子类化实现。

Lambda层由于没有需要被训练的参数,只需要定义正向传播逻辑即可,使用比Layer基类子类化更加简单。

Lambda层的正向逻辑可以使用Python的lambda函数来表达,也可以用def关键字定义函数来表达。

import tensorflow as tf
from tensorflow.keras import layers,models,regularizers

mypower = layers.Lambda(lambda x:tf.math.pow(x,2))
mypower(tf.range(5))
# <tf.Tensor: shape=(5,), dtype=int32, numpy=array([ 0,  1,  4,  9, 16], dtype=int32)>

Layer的子类化一般需要重新实现初始化方法,Build方法和Call方法。下面是一个简化的线性层的范例,类似Dense.

class Linear(layers.Layer):
    def __init__(self, units=32, **kwargs):
        super(Linear, self).__init__(**kwargs)
        self.units = units
    
    #build方法一般定义Layer需要被训练的参数。    
    def build(self, input_shape): 
        self.w = self.add_weight("w",shape=(input_shape[-1], self.units),
                                 initializer='random_normal',
                                 trainable=True) #注意必须要有参数名称"w",否则会报错
        self.b = self.add_weight("b",shape=(self.units,),
                                 initializer='random_normal',
                                 trainable=True)
        super(Linear,self).build(input_shape) # 相当于设置self.built = True

    #call方法一般定义正向传播运算逻辑,__call__方法调用了它。  
    @tf.function
    def call(self, inputs): 
        return tf.matmul(inputs, self.w) + self.b
    
    #如果要让自定义的Layer通过Functional API 组合成模型时可以被保存成h5模型,需要自定义get_config方法。
    def get_config(self):  
        config = super(Linear, self).get_config()
        config.update({'units': self.units})
        return config
linear = Linear(units = 8)
print(linear.built)
#指定input_shape,显式调用build方法,第0维代表样本数量,用None填充
linear.build(input_shape = (None,16)) 
print(linear.built)
# False
# True
linear = Linear(units = 8)
print(linear.built)
linear.build(input_shape = (None,16)) 
print(linear.compute_output_shape(input_shape = (None,16)))

# False
# (None, 8)
linear = Linear(units = 16)
print(linear.built)
#如果built = False,调用__call__时会先调用build方法, 再调用call方法。
linear(tf.random.uniform((100,64))) 
print(linear.built)
config = linear.get_config()
print(config)

# False
# True
# {'name': 'linear_3', 'trainable': True, 'dtype': 'float32', 'units': 16}
tf.keras.backend.clear_session()

model = models.Sequential()
#注意该处的input_shape会被模型加工,无需使用None代表样本数量维
model.add(Linear(units = 1,input_shape = (2,)))  
print("model.input_shape: ",model.input_shape)
print("model.output_shape: ",model.output_shape)
model.summary()
model.input_shape:  (None, 2)
model.output_shape:  (None, 1)
'''
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
linear (Linear)              (None, 1)                 3         
=================================================================
Total params: 3
Trainable params: 3
Non-trainable params: 0
_________________________________________________________________
'''
model.compile(optimizer = "sgd",loss = "mse",metrics=["mae"])
print(model.predict(tf.constant([[3.0,2.0],[4.0,5.0]])))
# [[-0.04092304]
#  [-0.06150477]]
# 保存成 h5模型
model.save("./data/linear_model.h5",save_format = "h5")
model_loaded_keras = tf.keras.models.load_model(
    "./data/linear_model.h5",custom_objects={"Linear":Linear})
print(model_loaded_keras.predict(tf.constant([[3.0,2.0],[4.0,5.0]])))
# [[-0.04092304]
#  [-0.06150477]]
# 保存成 tf模型
model.save("./data/linear_model",save_format = "tf")
model_loaded_tf = tf.keras.models.load_model("./data/linear_model")
print(model_loaded_tf.predict(tf.constant([[3.0,2.0],[4.0,5.0]])))
# INFO:tensorflow:Assets written to: ./data/linear_model/assets
# [[-0.04092304]
#  [-0.06150477]]

在这里插入图片描述

损失函数loss

在这里插入图片描述

一般来说,监督学习的目标函数由损失函数和正则化项组成。(Objective = Loss + Regularization)

**pytorch中:**Pytorch中的损失函数一般在训练模型时候指定。

注意Pytorch中内置的损失函数的参数和tensorflow不同,是y_pred在前,y_true在后,而Tensorflow是y_true在前,y_pred在后。

对于回归模型,通常使用的内置损失函数是均方损失函数nn.MSELoss 。

对于二分类模型,通常使用的是二元交叉熵损失函数nn.BCELoss (输入已经是sigmoid激活函数之后的结果) 或者 nn.BCEWithLogitsLoss (输入尚未经过nn.Sigmoid激活函数) 。

对于多分类模型,一般推荐使用交叉熵损失函数 nn.CrossEntropyLoss。 (y_true需要是一维的,是类别编码。y_pred未经过nn.Softmax激活。)

此外,如果多分类的y_pred经过了nn.LogSoftmax激活,可以使用nn.NLLLoss损失函数(The negative log likelihood loss)。 这种方法和直接使用nn.CrossEntropyLoss等价。

如果有需要,也可以自定义损失函数,自定义损失函数需要接收两个张量y_pred,y_true作为输入参数,并输出一个标量作为损失函数值。

Pytorch中的正则化项一般通过自定义的方式和损失函数一起添加作为目标函数。

如果仅仅使用L2正则化,也可以利用优化器的weight_decay参数来实现相同的效果。

tensorflow中:

对于keras模型,目标函数中的正则化项一般在各层中指定,例如使用Dense的 kernel_regularizer 和 bias_regularizer等参数指定权重使用l1或者l2正则化项,此外还可以用kernel_constraint 和 bias_constraint等参数约束权重的取值范围,这也是一种正则化手段。

损失函数在模型编译时候指定。对于回归模型,通常使用的损失函数是均方损失函数 mean_squared_error。

对于二分类模型,通常使用的是二元交叉熵损失函数 binary_crossentropy。

对于多分类模型,如果label是one-hot编码的,则使用类别交叉熵损失函数 categorical_crossentropy。如果label是类别序号编码的,则需要使用稀疏类别交叉熵损失函数 sparse_categorical_crossentropy。

如果有需要,也可以自定义损失函数,自定义损失函数需要接收两个张量y_true,y_pred作为输入参数,并输出一个标量作为损失函数值。

内置损失函数

内置的损失函数一般有类的实现和函数的实现两种形式。

**pytorhc中:**如:nn.BCE 和 F.binary_cross_entropy 都是二元交叉熵损失函数,前者是类的实现形式,后者是函数的实现形式。

实际上类的实现形式通常是调用函数的实现形式并用nn.Module封装后得到的。

一般我们常用的是类的实现形式。它们封装在torch.nn模块下,并且类名以Loss结尾。

import numpy as np
import pandas as pd
import torch 
from torch import nn 
import torch.nn.functional as F 


y_pred = torch.tensor([[10.0,0.0,-10.0],[8.0,8.0,8.0]])
y_true = torch.tensor([0,2])

# 直接调用交叉熵损失
ce = nn.CrossEntropyLoss()(y_pred,y_true)
print(ce)

# 等价于先计算nn.LogSoftmax激活,再调用NLLLoss
y_pred_logsoftmax = nn.LogSoftmax(dim = 1)(y_pred)
nll = nn.NLLLoss()(y_pred_logsoftmax,y_true)
print(nll)
# tensor(0.5493)
# tensor(0.5493)

**tensorflow中:**如:CategoricalCrossentropy 和 categorical_crossentropy 都是类别交叉熵损失函数,前者是类的实现形式,后者是函数的实现形式。

常用的一些内置损失函数说明如下。

损失函数类型pytorchtensorflow
均方误差损失nn.MSELossmean_squared_error
绝对值误差损失nn.L1Lossmean_absolute_error
平滑L1损失nn.SmoothL1Loss
平均百分比误差损失mean_absolute_percentage_error
Huber损失Huber
二元交叉熵nn.BCELoss/nn.BCEWithLogitsLossbinary_crossentropy
类别交叉熵nn.CrossEntropyLosscategorical_crossentropy
稀疏类别交叉熵sparse_categorical_crossentropy
合页损失函数sparse_categorical_crossentropy
负对数似然损失nn.NLLLoss
余弦相似度nn.CosineSimilaritycosine_similarity
分布很不均衡的损失函数nn.AdaptiveLogSoftmaxWithLoss
相对熵损失kld

名词解释:

pytorch

  • nn.MSELoss(均方误差损失,也叫做L2损失,用于回归)
  • nn.L1Loss (L1损失,也叫做绝对值误差损失,用于回归)
  • nn.SmoothL1Loss (平滑L1损失,当输入在-1到1之间时,平滑为L2损失,用于回归)
  • nn.BCELoss (二元交叉熵,用于二分类,输入已经过nn.Sigmoid激活,对不平衡数据集可以用weigths参数调整类别权重)
  • nn.BCEWithLogitsLoss (二元交叉熵,用于二分类,输入未经过nn.Sigmoid激活)
  • nn.CrossEntropyLoss (交叉熵,用于多分类,要求label为稀疏编码,输入未经过nn.Softmax激活,对不平衡数据集可以用weigths参数调整类别权重)
  • nn.NLLLoss (负对数似然损失,用于多分类,要求label为稀疏编码,输入经过nn.LogSoftmax激活)
  • nn.CosineSimilarity(余弦相似度,可用于多分类)
  • nn.AdaptiveLogSoftmaxWithLoss (一种适合非常多类别且类别分布很不均衡的损失函数,会自适应地将多个小类别合成一个cluster)

更多损失函数的介绍参考如下知乎文章:

《PyTorch的十八个损失函数》https://zhuanlan.zhihu.com/p/61379965

tensorflow

  • mean_squared_error(均方误差损失,用于回归,简写为 mse, 类与函数实现形式分别为 MeanSquaredError 和 MSE)
  • mean_absolute_error (平均绝对值误差损失,用于回归,简写为 mae, 类与函数实现形式分别为 MeanAbsoluteError 和 MAE)
  • mean_absolute_percentage_error (平均百分比误差损失,用于回归,简写为 mape, 类与函数实现形式分别为 MeanAbsolutePercentageError 和 MAPE)
  • Huber(Huber损失,只有类实现形式,用于回归,介于mse和mae之间,对异常值比较鲁棒,相对mse有一定的优势)
  • binary_crossentropy(二元交叉熵,用于二分类,类实现形式为 BinaryCrossentropy)
  • categorical_crossentropy(类别交叉熵,用于多分类,要求label为onehot编码,类实现形式为 CategoricalCrossentropy)
  • sparse_categorical_crossentropy(稀疏类别交叉熵,用于多分类,要求label为序号编码形式,类实现形式为 SparseCategoricalCrossentropy)
  • hinge(合页损失函数,用于二分类,最著名的应用是作为支持向量机SVM的损失函数,类实现形式为 Hinge)
  • kld(相对熵损失,也叫KL散度,常用于最大期望算法EM的损失函数,两个概率分布差异的一种信息度量。类与函数实现形式分别为 KLDivergence 或 KLD)
  • cosine_similarity(余弦相似度,可用于多分类,类实现形式为 CosineSimilarity)

自定义损失函数

自定义损失函数接收两个张量y_pred,y_true(tensorflow为y_true,y_pred)作为输入参数,并输出一个标量作为损失函数值。

pytorch中:也可以对nn.Module进行子类化,重写forward方法实现损失的计算逻辑,从而得到损失函数的类的实现。

tensorflow中:也可以对tf.keras.losses.Loss进行子类化,重写call方法实现损失的计算逻辑,从而得到损失函数的类的实现。

下面是一个Focal Loss的自定义实现示范。Focal Loss是一种对binary_crossentropy的改进损失函数形式。

它在样本不均衡和存在较多易分类的样本时相比binary_crossentropy具有明显的优势。

它有两个可调参数,alpha参数和gamma参数。其中alpha参数主要用于衰减负样本的权重,gamma参数主要用于衰减容易训练样本的权重。

从而让模型更加聚焦在正样本和困难样本上。这就是为什么这个损失函数叫做Focal Loss。

详见《5分钟理解Focal Loss与GHM——解决样本不平衡利器》

https://zhuanlan.zhihu.com/p/80594704

pytorch

class FocalLoss(nn.Module):
    
    def __init__(self,gamma=2.0,alpha=0.75):
        super().__init__()
        self.gamma = gamma
        self.alpha = alpha

    def forward(self,y_pred,y_true):
        bce = torch.nn.BCELoss(reduction = "none")(y_pred,y_true)
        p_t = (y_true * y_pred) + ((1 - y_true) * (1 - y_pred))
        alpha_factor = y_true * self.alpha + (1 - y_true) * (1 - self.alpha)
        modulating_factor = torch.pow(1.0 - p_t, self.gamma)
        loss = torch.mean(alpha_factor * modulating_factor * bce)
        return loss
#困难样本
y_pred_hard = torch.tensor([[0.5],[0.5]])
y_true_hard = torch.tensor([[1.0],[0.0]])

#容易样本
y_pred_easy = torch.tensor([[0.9],[0.1]])
y_true_easy = torch.tensor([[1.0],[0.0]])

focal_loss = FocalLoss()
bce_loss = nn.BCELoss()

print("focal_loss(hard samples):", focal_loss(y_pred_hard,y_true_hard))
print("bce_loss(hard samples):", bce_loss(y_pred_hard,y_true_hard))
print("focal_loss(easy samples):", focal_loss(y_pred_easy,y_true_easy))
print("bce_loss(easy samples):", bce_loss(y_pred_easy,y_true_easy))

#可见 focal_loss让容易样本的权重衰减到原来的 0.0005/0.1054 = 0.00474
#而让困难样本的权重只衰减到原来的 0.0866/0.6931=0.12496

# 因此相对而言,focal_loss可以衰减容易样本的权重。
# focal_loss(hard samples): tensor(0.0866)
# bce_loss(hard samples): tensor(0.6931)
# focal_loss(easy samples): tensor(0.0005)
# bce_loss(easy samples): tensor(0.1054)

tensorflow

def focal_loss(gamma=2., alpha=0.75):
    
    def focal_loss_fixed(y_true, y_pred):
        bce = tf.losses.binary_crossentropy(y_true, y_pred)
        p_t = (y_true * y_pred) + ((1 - y_true) * (1 - y_pred))
        alpha_factor = y_true * alpha + (1 - y_true) * (1 - alpha)
        modulating_factor = tf.pow(1.0 - p_t, gamma)
        loss = tf.reduce_sum(alpha_factor * modulating_factor * bce,axis = -1 )
        return loss
    return focal_loss_fixed
class FocalLoss(tf.keras.losses.Loss):
    
    def __init__(self,gamma=2.0,alpha=0.75,name = "focal_loss"):
        self.gamma = gamma
        self.alpha = alpha

    def call(self,y_true,y_pred):
        bce = tf.losses.binary_crossentropy(y_true, y_pred)
        p_t = (y_true * y_pred) + ((1 - y_true) * (1 - y_pred))
        alpha_factor = y_true * self.alpha + (1 - y_true) * (1 - self.alpha)
        modulating_factor = tf.pow(1.0 - p_t, self.gamma)
        loss = tf.reduce_sum(alpha_factor * modulating_factor * bce,axis = -1 )
        return loss

正则化项(L1,L2)

pytorch

通常认为L1 正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择。

而L2 正则化可以防止模型过拟合(overfitting)。一定程度上,L1也可以防止过拟合。

下面以一个二分类问题为例,演示给模型的目标函数添加自定义L1和L2正则化项的方法。

这个范例同时演示了上一个部分的FocalLoss的使用。

# 定义模型
class DNNModel(torchkeras.Model):
    def __init__(self):
        super(DNNModel, self).__init__()
        self.fc1 = nn.Linear(2,4)
        self.fc2 = nn.Linear(4,8) 
        self.fc3 = nn.Linear(8,1)
        
    def forward(self,x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        y = nn.Sigmoid()(self.fc3(x))
        return y
        
model = DNNModel()

model.summary(input_shape =(2,))
"""
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Linear-1                    [-1, 4]              12
            Linear-2                    [-1, 8]              40
            Linear-3                    [-1, 1]               9
================================================================
Total params: 61
Trainable params: 61
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.000008
Forward/backward pass size (MB): 0.000099
Params size (MB): 0.000233
Estimated Total Size (MB): 0.000340
----------------------------------------------------------------
"""
# 准确率
def accuracy(y_pred,y_true):
    y_pred = torch.where(y_pred>0.5,torch.ones_like(y_pred,dtype = torch.float32),
                      torch.zeros_like(y_pred,dtype = torch.float32))
    acc = torch.mean(1-torch.abs(y_true-y_pred))
    return acc

# L2正则化
def L2Loss(model,alpha):
    l2_loss = torch.tensor(0.0, requires_grad=True)
    for name, param in model.named_parameters():
        if 'bias' not in name: #一般不对偏置项使用正则
            l2_loss = l2_loss + (0.5 * alpha * torch.sum(torch.pow(param, 2)))
    return l2_loss

# L1正则化
def L1Loss(model,beta):
    l1_loss = torch.tensor(0.0, requires_grad=True)
    for name, param in model.named_parameters():
        if 'bias' not in name:
            l1_loss = l1_loss +  beta * torch.sum(torch.abs(param))
    return l1_loss

# 将L2正则和L1正则添加到FocalLoss损失,一起作为目标函数
def focal_loss_with_regularization(y_pred,y_true):
    focal = FocalLoss()(y_pred,y_true) 
    l2_loss = L2Loss(model,0.001) #注意设置正则化项系数
    l1_loss = L1Loss(model,0.001)
    total_loss = focal + l2_loss + l1_loss
    return total_loss

# 编译模型的时候使用定义的损失函数即可
model.compile(loss_func =focal_loss_with_regularization,
              optimizer= torch.optim.Adam(model.parameters(),lr = 0.01),
             metrics_dict={"accuracy":accuracy})

dfhistory = model.fit(30,dl_train = dl_train,dl_val = dl_valid,log_step_freq = 30)

tensorflow

tf.keras.backend.clear_session()

model = models.Sequential()
model.add(layers.Dense(64, input_dim=64,
                kernel_regularizer=regularizers.l2(0.01), 
                activity_regularizer=regularizers.l1(0.01),
                kernel_constraint = constraints.MaxNorm(max_value=2, axis=0))) 
# 正则化项作为添加层(最后一层)的参数kernel_regularizer添加即可。
model.add(layers.Dense(10,
        kernel_regularizer=regularizers.l1_l2(0.01,0.01),activation = "sigmoid"))
model.compile(optimizer = "rmsprop",
        loss = "binary_crossentropy",metrics = ["AUC"])
model.summary()
"""
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense (Dense)                (None, 64)                4160      
_________________________________________________________________
dense_1 (Dense)              (None, 10)                650       
=================================================================
Total params: 4,810
Trainable params: 4,810
Non-trainable params: 0
_________________________________________________________________
"""

在这里插入图片描述

说明

笔记中很多代码案例来自于:

《20天吃掉那只Pytorch》

  • 🚀 github项目地址: https://github.com/lyhue1991/eat_pytorch_in_20_days

《30天吃掉那只TensorFlow2》

  • 🚀 github项目地址: https://github.com/lyhue1991/eat_tensorflow2_in_30_days

感兴趣的同学可以进入学习。

===========================================================================

我的笔记一部分是将这两项目中内容整理归纳,一部分是相应功能的内容自己找资料整理归纳。

笔记以MD格式存入我的git仓库,另外代码案例所需要数据集文件也在其中:可以clone下来学习使用。

《pytorch-tensorflow对比学习笔记》

🚀 github项目地址: https://github.com/Boris-2021/pytorch-tensorflow-Comparative-study

===========================================================================

笔记中增加了很多趣味性的图片,增加阅读乐趣。

===========================================================================

感觉对你的学习有帮助,就点个星,点个赞,点个关注再走把,整理不易,拒绝白嫖从我做起!
在这里插入图片描述

  • 5
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 在 C 语言中实现一个深度学习模型可以使用一些开源的库,比如 DarkNet,TensorFlow C API,Caffe 等。你需要了解深度学习的基本原理和 C 语言的编程知识。 以下是一个使用 TensorFlow C API 实现的简单的例子: ``` #include <stdio.h> #include <tensorflow/c/c_api.h> int main() { // 创建一个会话 TF_Session* session = TF_NewSession(NULL, NULL); // 定义输入和输出张量 TF_Tensor* input_tensor = create_input_tensor(); TF_Tensor* output_tensor = NULL; // 定义输入和输出张量名称 const char* input_name = "input"; const char* output_name = "output"; // 定义输入和输出的张量数组 const char* input_names[1] = {input_name}; const char* output_names[1] = {output_name}; TF_Tensor* inputs[1] = {input_tensor}; TF_Tensor* outputs[1] = {output_tensor}; // 运行模型 TF_SessionRun(session, NULL, // 运行参数 input_names, inputs, 1, // 输入张量 output_names, outputs, 1, // 输出张量 NULL, 0, // 其他节点 NULL // 运行状态 ); // 处理输出结果 process_output(output_tensor); // 释放资源 TF_DeleteSession(session, NULL); TF_DeleteTensor(input_tensor); TF_DeleteTensor(output_tensor); return 0; } ``` 这个例子中,我们使用了 TensorFlow C API 中的 `TF_Session` 和 `TF_Tensor` 来实现模型的运行。在 `main` 函数中,我们首先创建了一个会话,然 ### 回答2: 深度学习模型的代码可以使用编程语言Python和相应的机器学习框架来实现。以下是一个简单的实现深度学习模型的例子: ```python import numpy as np import tensorflow as tf # 加载数据 def load_data(): # 从文件或其他来源加载数据 # 返回训练数据和标签数据 pass # 构建深度学习模型 def build_model(): # 使用TensorFlow构建模型 # 定义输入、隐藏、输出等组件 # 返回模型 pass # 定义损失函数 def loss_function(): # 定义模型损失函数 # 返回损失值 pass # 进行训练 def train_model(model, train_data, train_labels): # 使用梯度下降等方法训练模型 # 更新模型的权重和偏置 pass # 进行预测 def predict(model, test_data): # 使用模型进行预测 # 返回预测结果 pass # 主函数 def main(): # 加载数据 train_data, train_labels = load_data() # 构建模型 model = build_model() # 训练模型 train_model(model, train_data, train_labels) # 进行预测 test_data = load_test_data() predictions = predict(model, test_data) # 输出预测结果 print(predictions) # 程序入口 if __name__ == '__main__': main() ``` 上述代码实现了一个简单的深度学习模型。其中,需要根据具体任务调整模型架构、损失函数、优化算法等部分。此外,还要根据数据类型和大小对模型进行适当的修改和调整。 ### 回答3: 要实现一个深度学习模型的代码,最关键的是选择一个合适的深度学习框架。现在最常用的框架包括TensorFlowPyTorch和Keras等。 以TensorFlow为例,首先需要导入相关的库和模块。然后定义模型的结构,可以选择使用全连接、卷积、循环等来构建网络。在构建网络结构时,需要定义输入的形状、各的大小和激活函数。 接下来,要定义损失函数和优化器。损失函数用于衡量模型的预测结果与真实值之间的误差,常见的损失函数有均方误差(MSE)和交叉熵(Cross Entropy)等。优化器用于更新模型参数,常见的优化器有随机梯度下降(SGD)和Adam等。 然后,需要定义训练过程。可以设置训练的批次大小、迭代次数和学习率等参数。在每个迭代中,首先将输入数据传入模型进行前向传播,得到预测结果。然后将预测结果与真实值进行比较,计算损失函数的值。接着使用优化器来更新模型参数,减小损失函数的值。 最后,要定义模型的评估指标和预测过程。可以选择计算准确率、精确率和召回率等指标来评估模型的性能。预测过程则是将新的输入数据传入模型进行前向传播,得到输出结果。 以上就是一个简单的深度学习模型的代码实现过程。当然,实际的模型可能更加复杂,可能需要处理图片、文本等不同类型的数据,也会涉及到更多的技术细节和调参。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值