- 博客(137)
- 资源 (31)
- 收藏
- 关注
转载 基于深度学习目标姿态估计的论文一览
https://zhuanlan.zhihu.com/p/108381101论文只选了那些单目图像的深度学习方法,上部主要是半年以前的论文。•PoseCNN: A CNN for 6D ObjectPoseEstimation in Cluttered Scenes (RSS 2017)估计已知目标的6D姿势对于机器人与现实世界进行交互非常重要。由于目标的种类繁多以及目标之间的干扰...
2020-04-15 14:18:11 3236
原创 基于深度学习的2D图像目标检测
参见第一部分网址1,第二部分网址2一、如何计算一个图像的HOG特征维数呢?Dalal提出的Hog特征提取的过程:把样本图像分割为若干个像素的单元(cell),把梯度方向平均划分为9个区间(bin),在每个单元里面对所有像素的梯度方向在各个方向区间进行直方图统计,得到一个9维的特征向量,每相邻的4个单元构成一个块(block),把一个块内的特征向量联起来得到36维的特征向量...
2020-03-31 17:14:49 4530
转载 SLAM综述阅读笔记七:Visual and Visual-Inertial SLAM: State of the Art, Classification,and Experimental 2021
Visual and Visual-Inertial SLAM: State of the Art, Classification,and Experimental 视觉/视觉惯性SLAM最新综述:领域进展、方法分类与实验对比
2022-07-22 14:59:05 2470
转载 SLAM综述阅读笔记六:基于图像语义的SLAM调研:移动机器人自主导航面向应用的解决方案 2020
A survey of image semantics-based visual simultaneous localization and mapping: Application-oriented solutions to autonomous navigation of mobile robots[J].Int
2022-07-22 12:40:51 2993
转载 SLAM综述阅读笔记四:A Survey on Deep Learning for Localization and Mapping: Towards the Age of Spatial 2020
《A Survey on Deep Learning for Localization and Mapping: Towards the Age of Spatial Machine Intelligence》
2022-07-21 17:03:30 2755
转载 SLAM综述阅读笔记五:Simultaneous Localization and Mapping Related Datasets: A Comprehensive Survey(2021)
Simultaneous Localization and Mapping Related Datasets: A Comprehensive Survey(2021)
2022-07-13 15:17:42 1914
转载 SLAM综述阅读笔记二:Simultaneous Localization and Mapping: A Survey of Current Trends in Autonomous(2017)
Simultaneous Localization And Mapping: A Survey of Current Trends in Autonomous Driving》
2022-07-13 11:20:42 2625
转载 SLAM综述阅读笔记一:Past, Present, and Future of Simultaneous Localization And Mapping(2016)
Past, Present, and Future of SimultaneousLocalization And Mapping: Towards theRobust-Perception Age
2022-07-08 17:06:52 2705
原创 2D人体姿态估计 - DeepPose
早期一些自顶向下的深度学习方法用神经网络直接预测人体关键点的 2D 坐标 [1, 2, 3]。DeepPose [1] 是这类方法的经典代表。DeepPose 采用级联的神经网络来预测人体各个关键点的相对坐标。每一个阶段都拿上一阶段的输出坐标作为输入,并进一步预测更为准确的坐标位置。最终,将预测得到的归一化的相对坐标转换为绝对坐标。Alexander Toshev和Christian Szegedy提出的DeepPose最早将CNN(卷积神经网络)应用于人体关节点检测。DeepPose将人体姿.
2022-06-28 17:13:52 1743
转载 姿态估计之3D 人体姿态估计 - A curated list of related resources for 3d human reconstruction.【转】
转自【GitHub - Hi-MrChen/3d-human-reconstruction】A curated list of related resources for 3d human reconstruction
2022-06-17 09:45:32 3840
转载 姿态估计之2D人体姿态估计 -HRFormer: High-Resolution Transformer for Dense Prediction
本文提出了一种高分辨率Transformer(HRT),它可以通过学习高分辨率表征来完成密集的预测任务,而原来的Vision Transformer学习的则是低分辨率表征,同时具有很高的内存和计算成本。作者在高分辨率卷积网络(HRNet)中分别引入的多分辨率并行设计,以及local-window self-attention,在小的非重叠图像窗口上执行self-attention,以提高内存和计算效率。此外,在FFN中引入了卷积操作,以在断开的图像窗口之间交换信息。......
2022-06-15 16:33:21 1104
原创 姿态估计之2D人体姿态估计 - Single-Stage Multi-Person Pose Machines
Structured Pose Representation (SPR)将人体实例和身体关节的位置信息进行统一。人体关节分级表示。
2022-06-14 10:50:36 1050
原创 姿态估计之2D人体姿态估计 - (HRNet)Deep High-Resolution Representation Learning for Human Pose Estimation(多家综合)
本文提出的网络在整个过程中保持高分辨率表征: (1)从一个高分辨率的子网开始,作为第一阶段,将高分辨率到低分辨率的子网逐个添加,形成更多的阶段,并将多分辨率的子网并行连接。 (2)执行重复的多尺度融合,这样每一个高到低分辨率的表征都能从其它平行表征中反复接收信息,从而得到丰富的高分辨率表征。因此,预测的关键点热图可能更准确、空间上更精确。.........
2022-06-13 16:47:12 3764
转载 姿态估计之2D人体姿态估计 - HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Estimation
提出了一种新的Bottom-up的人体姿态估计方法HigherHRNet,该方法利用高分辨率特征金字塔学习尺度感知表示。该方法在训练方面具有多分辨率监督,在推理方面具有多分辨率聚合功能,能够较好地解决自底向上多人姿态估计中的尺度变化挑战,并能更精确地定位关键点,特别是对小人物。HigherHRNet中的特征金字塔由HRNet的特征映射输出和通过转置卷积的上采样高分辨率输出组成。.........
2022-06-13 10:57:46 1617
原创 姿态估计之2D人体姿态估计 - PifPaf:Composite Fields for Human Pose Estimation
通过预测图片中每个位置的Pif信息, 来确定图片上的位置是否是人体关节点位置; 并通过paf信息把同属于同一个人的人体关节点连接起来, 这样就可以 1) 预测出图片上所有人的关节点 2) 把属于同一个人的人体关节点连接起来...
2022-06-10 17:26:11 1680 1
原创 姿态估计之2D人体姿态估计 - (OpenPose) Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
提出了一种有效检测多人图像中的2D姿势的方法。 该方法使用非参数表示,我们称之为部分亲和场(PAF),用于学习将图像中的身体部位与个体联系起来。 该体系结构编码全局上下文,允许贪婪的自下而上解析步骤,无论图像中的人数多少,同时实现高精度和实时性能。 架构旨在将学习关节点和关节点之间的连接融合起来,通过相同顺序的两个分支进行关联预测。............
2022-06-10 10:22:40 2779
原创 姿态估计之2D人体姿态估计 - Associative Embedding: End-to-End Learning for Joint Detection and Grouping
Associative Embedding,一种有监督的卷积神经网络用于检测与分组任务中采取的新方法。
2022-06-09 09:56:22 1012
原创 姿态估计之2D人体姿态估计 - Human Pose Regression with Residual Log-likelihood Estimation(RLE)
将训练中的误差作为样本,利用MLE极大似然估计和 Flow-based 生成模型学习潜在的误差分布
2022-06-02 16:49:09 1798 1
转载 姿态估计之2D人体姿态估计 - SimDR: Is 2D Heatmap Representation Even Necessary for Human Pose Estimation?
提出了一种简单而有前途的关键点坐标解耦表示(a Simple yet promising Disentangled Representation for keypoint coordinate,SimDR),将人体关键点定位重新定义为一种分类任务
2022-06-02 16:47:06 2019
原创 2D人体姿态估计 - Convolutional Pose Machines(CPM)
Convolutional Pose Machines(CPM)的主要贡献在于:a) 用Heatmap来表示关节点的位置及位置约束关系,并且将Heatmap和Feature Map同时作为数据在网络中传递,同时在多个尺度处理输入的特征,充分考虑各个关节点之间的空间位置关系。b) 多个阶段(Stage)有监督训练,避免过深网络难以优化的问题。OpenPose是GitHub上最受欢迎的人体姿态估计项目(14.8K Stars, 4.2K Folks),其人体关键点检测正是主要基于Convo.....
2022-06-02 11:32:01 1956
原创 2D人体姿态估计 - Numerical Coordinate Regression with Convolutional Neural Networks(DSNT)
参考 :【论文阅读笔记】Numerical Coordinate Regression with Convolutional Neural Networks_时光机゚的博客-CSDN博客论文地址:Numerical Coordinate Regression with Convolutional Neural Networks代码地址:GitHub - anibali/dsntnn: PyTorch implementation of DSNT一、论文总结 本文提供了一种从图像中直接学.
2022-06-02 11:30:55 1729
转载 姿态估计之2D人体姿态估计 - Distribution Aware Coordinate Representation for Human Pose Estimation【转-修改】
Distribution-aware Maximum Relocalization是在基于分布假设的情况下对最大激活值进行重定位。
2022-06-02 11:29:04 802 2
原创 姿态估计之2D人体姿态估计 - Simple Baseline(SBL)
论文地址:Simple Baselines for Human Pose Estimation and Tracking代码地址:GitHub - leoxiaobin/pose.pytorch: Simple Baselines for Human Pose Estimation and TrackingSimple Baselines,是2018年MSRA的工作,网络结构如下图所示。之所以叫这个名字,是因为这个网络真的很简单。该网络就是在ResNet的基础上接了一个head,这个head仅仅包.
2022-05-27 09:41:21 3246
转载 Google X开源抓取机械臂,无需人工标注就能一眼找到目标零件[转]
【转自】谷歌 Google X 开源抓取机械臂,无需人工标注就能一眼找到目标零件,正确率达 87.8%_机械臂常见,但你见过这么聪明的吗?从工作台上一眼找到合适的螺母、稳稳拿住。再送到目标螺杆上,整个动作一气呵成:即使是相似度极高的两个部件,也能准确区分并“揪”出正确的那个:要知道,平时我们自己做实验、或是拼装没见过的机械零件时,面对各个相似的零件都可能拿错,更何况机器人。(想象一下拼装乐高零件的痛苦)但这只机械臂没有使用过任何人工标注,就能从模拟器立刻迁移到...
2022-05-26 14:47:55 528
转载 姿态估计之3D 人体姿态估计 - MMPose 【转】
本文将结合 MMPose 对 3D HPE 的主流算法和数据集做一些介绍。1 主流算法1.1 基于单目图像的方法 由于单目图像易于获取且不受场景限制,很多方法都以此为输入数据。但是,正如前面提到的,根据 2D 图像估计 3D 姿态是一个不适定问题,即可能存在多个不同的 3D 姿态,它们的 2D 投影是同一个 2D 姿态。并且,基于单目图像的方法也面临着自遮挡、物体遮挡、深度的不确定性等问题。由于缺少 3D 信息,目前的方法大多只能预测 root-relative pose,即以根关节(pelv.
2022-05-20 14:35:24 6269
转载 姿态估计之3D 人体姿态估计 - 总结(1)【转】
参考1、3D 人体姿态估计简述 - 知乎2、3D人体姿态估计(介绍及论文归纳)0 前言3D Human Pose Estimation(以下简称 3D HPE )的目标是在三维空间中估计人体关键点的位置。3D HPE 的应用非常广泛,包括人机交互、运动分析、康复训练等,它也可以为其他计算机视觉任务(例如行为识别)提供 skeleton 等方面的信息。关于人体的表示一般有两种方式:第一种以骨架的形式表示人体姿态,由一系列的人体关键点和关键点之间的连线构成;另一种是参数化的人体模型(如 SMPL
2022-05-20 14:10:33 7099 1
转载 姿态估计之简述 Human Pose with Deep-learning【转】
转自[简述 Human Pose with Deep-learning - 知乎]2019年底到2021年初,算是入坑一年了。大大小小的论文总共看了200多篇,觉得是时候要整理归纳一下了。为了方便区分,按细分领域简单梳理成了脑图,每一部分可以配合正文具体看,完整的脑图也放到了文末的链接。这一年论文的脑图本文只针对 human pose 领域的研究进展,结合自己的理解感受简单梳理一下这个领域。1. Pose Estimation对于 Human Pose Estimation 这个
2022-05-20 09:40:28 1628
原创 姿态估计之2D人体姿态估计(1)(仅供个人参考)
参考1、自顶向下的 2D 人体姿态估计 - 知乎2、人体姿态估计(Human Pose Estimation)经典方法整理 - 知乎3、2D人体姿态估计浅析 - 知乎4、人体姿态估计中回归出了heatmap如何去计算关键点的坐标位置? - 知乎5、论文阅读 - Deep High-Resolution Representation Learning for Human Pose Estimation6、【HRNet】《Deep High-Resolution Represen....
2022-05-18 14:49:41 9489 1
原创 姿态估计之2D人体姿态估计 - CPN(Cascaded Pyramid Network for Multi-Person Pose Estimation)
该论文发表在2018年CVPR上,用于多人姿态估计的级联金字塔网络arxiv论文地址:https://arxiv.org/abs/1711.07319github代码:https://github.com/GengDavid/pytorch-cpn,https://github.com/chenyilun95/tf-cpn文档编辑参考:1、论文笔记(CPN):Cascaded Pyramid Network for Multi-Person Pose Estimation2、2018-C
2022-05-17 17:30:33 2260
原创 姿态估计之基础知识
An Intuitive Explanation of Convolutional Neural Networks – the data science blog【译】神经网络的直观解释 – HackCV如何理解卷积神经网络(An Intuitive Explanation of Convolutional Neural Networks)3D Visualization of a Convolutional Neural Network2D Visualization of a Conv...
2022-05-17 10:06:03 268
原创 2D人体姿态估计 - Stakced Hourglass Network(SHN)个人理解
Stacked Hourglass Networks for Human Pose Estimation中文翻译An Intuitive Explanation of Convolutional Neural Networks – the data science blog为了进行人体姿态估计,我们使用一种特殊类型的全卷积网络,称为hourglass网络。网络的编解码器结构使它看起来像一个沙漏,因此被称为“hourglass networks”Hourglass网络图个人理解:.
2022-05-17 09:29:08 1666
转载 3D 人体姿态估计简述[转]
[转自]3D 人体姿态估计简述 - 知乎0 前言3D Human Pose Estimation(以下简称 3D HPE )的目标是在三维空间中估计人体关键点的位置。3D HPE 的应用非常广泛,包括人机交互、运动分析、康复训练等,它也可以为其他计算机视觉任务(例如行为识别)提供 skeleton 等方面的信息。关于人体的表示一般有两种方式:第一种以骨架的形式表示人体姿态,由一系列的人体关键点和关键点之间的连线构成;另一种是参数化的人体模型(如 SMPL [2]),以 mesh 形式表示人体姿态和体
2022-05-11 15:44:26 2680
转载 CVPR 2019 | 几何约束的自监督信号[转]
[转自]CVPR 2019 | 几何约束的自监督信号 - 知乎Introduction对于3D的人体姿态估计,常用的方法是two-stage的,即先训练一个从图片或视频的RGB流中估计2D关键点,再训练一个lifting network,将2D的关键点提升到3D。整个流程有很多可以讨论的地方,如自底而顶和从上至下的2D关键点估计方法的区别,还有直接从RGB流中估计3D关键点。在这里只讨论将2D提升到3D的部分。首先需要说明的是,3D人体姿态数据集的制作成本很高,并且大都在室内场景下,..
2022-05-11 15:09:07 1256
转载 无监督单视角3D人体姿态估计中的不确定性建模[转]
[转]无监督单视角3D人体姿态估计中的不确定性建模 - 知乎Introduction来自ICCV2021的工作Towards Alleviating the Modeling Ambiguity of Unsupervised Monocular 3D Human Pose Estimation。本文针对了无监督单视角3D人体姿态估计中的不确定性问题进行了研究,整个工作直指本质,实验丰富,收获很大。这个Ambiguity主要在于两部分:Scale ambiguity:在单视角中,如果没有别的约束
2022-05-11 14:58:55 542
原创 深度学习之梯度下降与优化
参考简单认识Adam优化器 - 知乎三种梯度下降算法的比较和几种优化算法 - 知乎pytorch学习系列(4):常用优化算法_ch ur h的博客-CSDN博客一、问题的提出大多数机器学习或者深度学习算法都涉及某种形式的优化。 优化指的是改变 以最小化或最大化某个函数 的任务。 我们通常以最小化 指代大多数最优化问题。我们把要最小化或最大化的函数称为目标函数或准则。 当我们对其进行最小化时,我们也把它称为代价函数、损失函数或误差函数。下面,我们假设一个损失函数为其中 ...
2022-05-09 16:25:27 3143 2
转载 深度学习之激活函数
转自[深度学习中常用激活函数总结 - 知乎]0. 前言本文总结了几个在深度学习中比较常用的激活函数:Sigmoid、ReLU、LeakyReLU以及Tanh,从激活函数的表达式、导数推导以及简单的编程实现来说明。1. Sigmoid激活函数Sigmoid激活函数表达式Sigmoid导数表达式Sigmoid编程实现Sigmoid激活函数以及导函数图像Sigmoid激活函数也叫做Logistic函数,因为它是线性回归转换为Logistic(逻辑回归)的核心函数,这
2022-05-07 15:48:32 2010
原创 深度学习之损失函数
损失函数1、什么是损失函数?一言以蔽之,损失函数(loss function)就是用来度量模型的预测值f(x)与真实值Y的差异程度的运算函数,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。-损失函数:用于衡量'单个样本点'预测值与实际值的偏离程度。-风险函数:用于衡量'样本点平均意义'下的好坏,就是说要除以batch_..
2022-05-07 15:38:58 13415
Asymptotic_stability_and_feedback_stabilization
2018-10-11
ros by example source code kinetic
2018-07-28
MultivacDisplay source code
2014-11-13
Multivac VS2010 修改编译Ver 1.0
2014-10-16
计算机视觉 计算理论与算法基础
2014-04-02
【数学】小波十讲(中文版)
2013-06-21
LED晶粒分拣技术的机器视觉研究
2013-06-17
三维物体识别
2013-06-17
图像测量系统及关键技术研究
2013-06-17
多尺度几何分析在图像边缘检测中的应用
2013-06-17
小波变换教程
2013-06-14
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人