SLAM综述阅读笔记七:Visual and Visual-Inertial SLAM: State of the Art, Classification,and Experimental 2021 Visual and Visual-Inertial SLAM: State of the Art, Classification,and Experimental 视觉/视觉惯性SLAM最新综述:领域进展、方法分类与实验对比
SLAM综述阅读笔记六:基于图像语义的SLAM调研:移动机器人自主导航面向应用的解决方案 2020 A survey of image semantics-based visual simultaneous localization and mapping: Application-oriented solutions to autonomous navigation of mobile robots[J].Int
SLAM综述阅读笔记四:A Survey on Deep Learning for Localization and Mapping: Towards the Age of Spatial 2020 《A Survey on Deep Learning for Localization and Mapping: Towards the Age of Spatial Machine Intelligence》
SLAM综述阅读笔记五:Simultaneous Localization and Mapping Related Datasets: A Comprehensive Survey(2021) Simultaneous Localization and Mapping Related Datasets: A Comprehensive Survey(2021)
SLAM综述阅读笔记二:Simultaneous Localization and Mapping: A Survey of Current Trends in Autonomous(2017) Simultaneous Localization And Mapping: A Survey of Current Trends in Autonomous Driving》
SLAM综述阅读笔记一:Past, Present, and Future of Simultaneous Localization And Mapping(2016) Past, Present, and Future of SimultaneousLocalization And Mapping: Towards theRobust-Perception Age
2D人体姿态估计 - DeepPose 早期一些自顶向下的深度学习方法用神经网络直接预测人体关键点的 2D 坐标 [1, 2, 3]。DeepPose [1] 是这类方法的经典代表。DeepPose 采用级联的神经网络来预测人体各个关键点的相对坐标。每一个阶段都拿上一阶段的输出坐标作为输入,并进一步预测更为准确的坐标位置。最终,将预测得到的归一化的相对坐标转换为绝对坐标。Alexander Toshev和Christian Szegedy提出的DeepPose最早将CNN(卷积神经网络)应用于人体关节点检测。DeepPose将人体姿.
姿态估计之3D 人体姿态估计 - A curated list of related resources for 3d human reconstruction.【转】 转自【GitHub - Hi-MrChen/3d-human-reconstruction】A curated list of related resources for 3d human reconstruction
姿态估计之2D人体姿态估计 -HRFormer: High-Resolution Transformer for Dense Prediction 本文提出了一种高分辨率Transformer(HRT),它可以通过学习高分辨率表征来完成密集的预测任务,而原来的Vision Transformer学习的则是低分辨率表征,同时具有很高的内存和计算成本。作者在高分辨率卷积网络(HRNet)中分别引入的多分辨率并行设计,以及local-window self-attention,在小的非重叠图像窗口上执行self-attention,以提高内存和计算效率。此外,在FFN中引入了卷积操作,以在断开的图像窗口之间交换信息。......
姿态估计之2D人体姿态估计 - Single-Stage Multi-Person Pose Machines Structured Pose Representation (SPR)将人体实例和身体关节的位置信息进行统一。人体关节分级表示。
姿态估计之2D人体姿态估计 - (HRNet)Deep High-Resolution Representation Learning for Human Pose Estimation(多家综合) 本文提出的网络在整个过程中保持高分辨率表征: (1)从一个高分辨率的子网开始,作为第一阶段,将高分辨率到低分辨率的子网逐个添加,形成更多的阶段,并将多分辨率的子网并行连接。 (2)执行重复的多尺度融合,这样每一个高到低分辨率的表征都能从其它平行表征中反复接收信息,从而得到丰富的高分辨率表征。因此,预测的关键点热图可能更准确、空间上更精确。.........
姿态估计之2D人体姿态估计 - HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Estimation 提出了一种新的Bottom-up的人体姿态估计方法HigherHRNet,该方法利用高分辨率特征金字塔学习尺度感知表示。该方法在训练方面具有多分辨率监督,在推理方面具有多分辨率聚合功能,能够较好地解决自底向上多人姿态估计中的尺度变化挑战,并能更精确地定位关键点,特别是对小人物。HigherHRNet中的特征金字塔由HRNet的特征映射输出和通过转置卷积的上采样高分辨率输出组成。.........
姿态估计之2D人体姿态估计 - PifPaf:Composite Fields for Human Pose Estimation 通过预测图片中每个位置的Pif信息, 来确定图片上的位置是否是人体关节点位置; 并通过paf信息把同属于同一个人的人体关节点连接起来, 这样就可以 1) 预测出图片上所有人的关节点 2) 把属于同一个人的人体关节点连接起来...
姿态估计之2D人体姿态估计 - (OpenPose) Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields 提出了一种有效检测多人图像中的2D姿势的方法。 该方法使用非参数表示,我们称之为部分亲和场(PAF),用于学习将图像中的身体部位与个体联系起来。 该体系结构编码全局上下文,允许贪婪的自下而上解析步骤,无论图像中的人数多少,同时实现高精度和实时性能。 架构旨在将学习关节点和关节点之间的连接融合起来,通过相同顺序的两个分支进行关联预测。............
姿态估计之2D人体姿态估计 - Associative Embedding: End-to-End Learning for Joint Detection and Grouping Associative Embedding,一种有监督的卷积神经网络用于检测与分组任务中采取的新方法。
姿态估计之2D人体姿态估计 - Human Pose Regression with Residual Log-likelihood Estimation(RLE) 将训练中的误差作为样本,利用MLE极大似然估计和 Flow-based 生成模型学习潜在的误差分布
姿态估计之2D人体姿态估计 - SimDR: Is 2D Heatmap Representation Even Necessary for Human Pose Estimation? 提出了一种简单而有前途的关键点坐标解耦表示(a Simple yet promising Disentangled Representation for keypoint coordinate,SimDR),将人体关键点定位重新定义为一种分类任务
2D人体姿态估计 - Convolutional Pose Machines(CPM) Convolutional Pose Machines(CPM)的主要贡献在于:a) 用Heatmap来表示关节点的位置及位置约束关系,并且将Heatmap和Feature Map同时作为数据在网络中传递,同时在多个尺度处理输入的特征,充分考虑各个关节点之间的空间位置关系。b) 多个阶段(Stage)有监督训练,避免过深网络难以优化的问题。OpenPose是GitHub上最受欢迎的人体姿态估计项目(14.8K Stars, 4.2K Folks),其人体关键点检测正是主要基于Convo.....
2D人体姿态估计 - Numerical Coordinate Regression with Convolutional Neural Networks(DSNT) 参考 :【论文阅读笔记】Numerical Coordinate Regression with Convolutional Neural Networks_时光机゚的博客-CSDN博客论文地址:Numerical Coordinate Regression with Convolutional Neural Networks代码地址:GitHub - anibali/dsntnn: PyTorch implementation of DSNT一、论文总结 本文提供了一种从图像中直接学.