自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(137)
  • 资源 (31)
  • 收藏
  • 关注

转载 基于深度学习目标姿态估计的论文一览

https://zhuanlan.zhihu.com/p/108381101论文只选了那些单目图像的深度学习方法,上部主要是半年以前的论文。•PoseCNN: A CNN for 6D ObjectPoseEstimation in Cluttered Scenes (RSS 2017)估计已知目标的6D姿势对于机器人与现实世界进行交互非常重要。由于目标的种类繁多以及目标之间的干扰...

2020-04-15 14:18:11 3236

原创 基于深度学习的2D图像目标检测

参见第一部分网址1,第二部分网址2一、如何计算一个图像的HOG特征维数呢?Dalal提出的Hog特征提取的过程:把样本图像分割为若干个像素的单元(cell),把梯度方向平均划分为9个区间(bin),在每个单元里面对所有像素的梯度方向在各个方向区间进行直方图统计,得到一个9维的特征向量,每相邻的4个单元构成一个块(block),把一个块内的特征向量联起来得到36维的特征向量...

2020-03-31 17:14:49 4530

原创 自动驾驶之入门目录【转】

自动驾驶之入门目录

2022-08-16 11:00:49 1068 1

转载 扩展卡尔曼滤波【转】

扩展卡尔曼滤波

2022-07-27 14:55:02 1608

转载 SLAM综述阅读笔记七:Visual and Visual-Inertial SLAM: State of the Art, Classification,and Experimental 2021

Visual and Visual-Inertial SLAM: State of the Art, Classification,and Experimental 视觉/视觉惯性SLAM最新综述:领域进展、方法分类与实验对比

2022-07-22 14:59:05 2470

转载 SLAM综述阅读笔记六:基于图像语义的SLAM调研:移动机器人自主导航面向应用的解决方案 2020

​A survey of image semantics-based visual simultaneous localization and mapping: Application-oriented solutions to autonomous navigation of mobile robots[J].Int​

2022-07-22 12:40:51 2993

转载 SLAM综述阅读笔记四:A Survey on Deep Learning for Localization and Mapping: Towards the Age of Spatial 2020

《A Survey on Deep Learning for Localization and Mapping: Towards the Age of Spatial Machine Intelligence》

2022-07-21 17:03:30 2755

转载 SLAM综述阅读笔记五:Simultaneous Localization and Mapping Related Datasets: A Comprehensive Survey(2021)

Simultaneous Localization and Mapping Related Datasets: A Comprehensive Survey(2021)

2022-07-13 15:17:42 1914

转载 SLAM综述阅读笔记二:Simultaneous Localization and Mapping: A Survey of Current Trends in Autonomous(2017)

Simultaneous Localization And Mapping: A Survey of Current Trends in Autonomous Driving》

2022-07-13 11:20:42 2625

转载 SLAM综述阅读笔记一:Past, Present, and Future of Simultaneous Localization And Mapping(2016)

Past, Present, and Future of SimultaneousLocalization And Mapping: Towards theRobust-Perception Age

2022-07-08 17:06:52 2705

原创 2D人体姿态估计 - DeepPose

早期一些自顶向下的深度学习方法用神经网络直接预测人体关键点的 2D 坐标 [1, 2, 3]。DeepPose [1] 是这类方法的经典代表。DeepPose 采用级联的神经网络来预测人体各个关键点的相对坐标。每一个阶段都拿上一阶段的输出坐标作为输入,并进一步预测更为准确的坐标位置。最终,将预测得到的归一化的相对坐标转换为绝对坐标。Alexander Toshev和Christian Szegedy提出的DeepPose最早将CNN(卷积神经网络)应用于人体关节点检测。DeepPose将人体姿.

2022-06-28 17:13:52 1743

转载 姿态估计之3D 人体姿态估计 - A curated list of related resources for 3d human reconstruction.【转】

转自【GitHub - Hi-MrChen/3d-human-reconstruction】A curated list of related resources for 3d human reconstruction

2022-06-17 09:45:32 3840

转载 姿态估计之2D人体姿态估计 -HRFormer: High-Resolution Transformer for Dense Prediction

​本文提出了一种高分辨率Transformer(HRT),它可以通过学习高分辨率表征来完成密集的预测任务,而原来的Vision Transformer学习的则是低分辨率表征,同时具有很高的内存和计算成本。作者在高分辨率卷积网络(HRNet)中分别引入的多分辨率并行设计,以及local-window self-attention,在小的非重叠图像窗口上执行self-attention,以提高内存和计算效率。此外,在FFN中引入了卷积操作,以在断开的图像窗口之间交换信息。​......

2022-06-15 16:33:21 1104

原创 姿态估计之2D人体姿态估计 - Single-Stage Multi-Person Pose Machines

Structured Pose Representation (SPR)将人体实例和身体关节的位置信息进行统一。人体关节分级表示。

2022-06-14 10:50:36 1050

原创 姿态估计之2D人体姿态估计 - (HRNet)Deep High-Resolution Representation Learning for Human Pose Estimation(多家综合)

本文提出的网络在整个过程中保持高分辨率表征:  (1)从一个高分辨率的子网开始,作为第一阶段,将高分辨率到低分辨率的子网逐个添加,形成更多的阶段,并将多分辨率的子网并行连接。  (2)执行重复的多尺度融合,这样每一个高到低分辨率的表征都能从其它平行表征中反复接收信息,从而得到丰富的高分辨率表征。因此,预测的关键点热图可能更准确、空间上更精确。.........

2022-06-13 16:47:12 3764

转载 姿态估计之2D人体姿态估计 - HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Estimation

提出了一种新的Bottom-up的人体姿态估计方法HigherHRNet,该方法利用高分辨率特征金字塔学习尺度感知表示。该方法在训练方面具有多分辨率监督,在推理方面具有多分辨率聚合功能,能够较好地解决自底向上多人姿态估计中的尺度变化挑战,并能更精确地定位关键点,特别是对小人物。HigherHRNet中的特征金字塔由HRNet的特征映射输出和通过转置卷积的上采样高分辨率输出组成。.........

2022-06-13 10:57:46 1617

原创 姿态估计之2D人体姿态估计 - PifPaf:Composite Fields for Human Pose Estimation

通过预测图片中每个位置的Pif信息, 来确定图片上的位置是否是人体关节点位置; 并通过paf信息把同属于同一个人的人体关节点连接起来, 这样就可以 1) 预测出图片上所有人的关节点 2) 把属于同一个人的人体关节点连接起来...

2022-06-10 17:26:11 1680 1

原创 姿态估计之2D人体姿态估计 - (OpenPose) Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields

​提出了一种有效检测多人图像中的2D姿势的方法。 该方法使用非参数表示,我们称之为部分亲和场(PAF),用于学习将图像中的身体部位与个体联系起来。 该体系结构编码全局上下文,允许贪婪的自下而上解析步骤,无论图像中的人数多少,同时实现高精度和实时性能。 架构旨在将学习关节点和关节点之间的连接融合起来,通过相同顺序的两个分支进行关联预测。​............

2022-06-10 10:22:40 2779

原创 姿态估计之2D人体姿态估计 - Associative Embedding: End-to-End Learning for Joint Detection and Grouping

Associative Embedding,一种有监督的卷积神经网络用于检测与分组任务中采取的新方法。

2022-06-09 09:56:22 1012

原创 姿态估计之2D人体姿态估计 - Human Pose Regression with Residual Log-likelihood Estimation(RLE)

将训练中的误差作为样本,利用MLE极大似然估计和 Flow-based 生成模型学习潜在的误差分布

2022-06-02 16:49:09 1798 1

转载 姿态估计之2D人体姿态估计 - SimDR: Is 2D Heatmap Representation Even Necessary for Human Pose Estimation?

提出了一种简单而有前途的关键点坐标解耦表示(a Simple yet promising Disentangled Representation for keypoint coordinate,SimDR),将人体关键点定位重新定义为一种分类任务

2022-06-02 16:47:06 2019

原创 2D人体姿态估计 - Convolutional Pose Machines(CPM)

Convolutional Pose Machines(CPM)的主要贡献在于:a) 用Heatmap来表示关节点的位置及位置约束关系,并且将Heatmap和Feature Map同时作为数据在网络中传递,同时在多个尺度处理输入的特征,充分考虑各个关节点之间的空间位置关系。b) 多个阶段(Stage)有监督训练,避免过深网络难以优化的问题。OpenPose是GitHub上最受欢迎的人体姿态估计项目(14.8K Stars, 4.2K Folks),其人体关键点检测正是主要基于Convo.....

2022-06-02 11:32:01 1956

原创 2D人体姿态估计 - Numerical Coordinate Regression with Convolutional Neural Networks(DSNT)

参考 :【论文阅读笔记】Numerical Coordinate Regression with Convolutional Neural Networks_时光机゚的博客-CSDN博客论文地址:Numerical Coordinate Regression with Convolutional Neural Networks代码地址:GitHub - anibali/dsntnn: PyTorch implementation of DSNT一、论文总结  本文提供了一种从图像中直接学.

2022-06-02 11:30:55 1729

转载 姿态估计之2D人体姿态估计 - Distribution Aware Coordinate Representation for Human Pose Estimation【转-修改】

Distribution-aware Maximum Relocalization是在基于分布假设的情况下对最大激活值进行重定位。

2022-06-02 11:29:04 802 2

原创 姿态估计之2D人体姿态估计 - Simple Baseline(SBL)

论文地址:Simple Baselines for Human Pose Estimation and Tracking代码地址:GitHub - leoxiaobin/pose.pytorch: Simple Baselines for Human Pose Estimation and TrackingSimple Baselines,是2018年MSRA的工作,网络结构如下图所示。之所以叫这个名字,是因为这个网络真的很简单。该网络就是在ResNet的基础上接了一个head,这个head仅仅包.

2022-05-27 09:41:21 3246

转载 Google X开源抓取机械臂,无需人工标注就能一眼找到目标零件[转]

【转自】谷歌 Google X 开源抓取机械臂,无需人工标注就能一眼找到目标零件,正确率达 87.8%_机械臂常见,但你见过这么聪明的吗?从工作台上一眼找到合适的螺母、稳稳拿住。再送到目标螺杆上,整个动作一气呵成:即使是相似度极高的两个部件,也能准确区分并“揪”出正确的那个:要知道,平时我们自己做实验、或是拼装没见过的机械零件时,面对各个相似的零件都可能拿错,更何况机器人。(想象一下拼装乐高零件的痛苦)但这只机械臂没有使用过任何人工标注,就能从模拟器立刻迁移到...

2022-05-26 14:47:55 528

转载 姿态估计之3D 人体姿态估计 - MMPose 【转】

本文将结合 MMPose 对 3D HPE 的主流算法和数据集做一些介绍。1 主流算法1.1 基于单目图像的方法 由于单目图像易于获取且不受场景限制,很多方法都以此为输入数据。但是,正如前面提到的,根据 2D 图像估计 3D 姿态是一个不适定问题,即可能存在多个不同的 3D 姿态,它们的 2D 投影是同一个 2D 姿态。并且,基于单目图像的方法也面临着自遮挡、物体遮挡、深度的不确定性等问题。由于缺少 3D 信息,目前的方法大多只能预测 root-relative pose,即以根关节(pelv.

2022-05-20 14:35:24 6269

转载 姿态估计之3D 人体姿态估计 - 总结(1)【转】

参考1、3D 人体姿态估计简述 - 知乎2、3D人体姿态估计(介绍及论文归纳)0 前言3D Human Pose Estimation(以下简称 3D HPE )的目标是在三维空间中估计人体关键点的位置。3D HPE 的应用非常广泛,包括人机交互、运动分析、康复训练等,它也可以为其他计算机视觉任务(例如行为识别)提供 skeleton 等方面的信息。关于人体的表示一般有两种方式:第一种以骨架的形式表示人体姿态,由一系列的人体关键点和关键点之间的连线构成;另一种是参数化的人体模型(如 SMPL

2022-05-20 14:10:33 7099 1

转载 姿态估计之简述 Human Pose with Deep-learning【转】

转自[简述 Human Pose with Deep-learning - 知乎]2019年底到2021年初,算是入坑一年了。大大小小的论文总共看了200多篇,觉得是时候要整理归纳一下了。为了方便区分,按细分领域简单梳理成了脑图,每一部分可以配合正文具体看,完整的脑图也放到了文末的链接。这一年论文的脑图本文只针对 human pose 领域的研究进展,结合自己的理解感受简单梳理一下这个领域。1. Pose Estimation对于 Human Pose Estimation 这个

2022-05-20 09:40:28 1628

原创 姿态估计之2D人体姿态估计(1)(仅供个人参考)

参考1、自顶向下的 2D 人体姿态估计 - 知乎2、人体姿态估计(Human Pose Estimation)经典方法整理 - 知乎3、2D人体姿态估计浅析 - 知乎4、人体姿态估计中回归出了heatmap如何去计算关键点的坐标位置? - 知乎5、论文阅读 - Deep High-Resolution Representation Learning for Human Pose Estimation6、【HRNet】《Deep High-Resolution Represen....

2022-05-18 14:49:41 9489 1

原创 姿态估计之2D人体姿态估计 - CPN(Cascaded Pyramid Network for Multi-Person Pose Estimation)

该论文发表在2018年CVPR上,用于多人姿态估计的级联金字塔网络arxiv论文地址:https://arxiv.org/abs/1711.07319github代码:https://github.com/GengDavid/pytorch-cpn,https://github.com/chenyilun95/tf-cpn文档编辑参考:1、论文笔记(CPN):Cascaded Pyramid Network for Multi-Person Pose Estimation2、2018-C

2022-05-17 17:30:33 2260

原创 姿态估计之基础知识

An Intuitive Explanation of Convolutional Neural Networks – the data science blog【译】神经网络的直观解释 – HackCV如何理解卷积神经网络(An Intuitive Explanation of Convolutional Neural Networks)3D Visualization of a Convolutional Neural Network2D Visualization of a Conv...

2022-05-17 10:06:03 268

原创 2D人体姿态估计 - Stakced Hourglass Network(SHN)个人理解

Stacked Hourglass Networks for Human Pose Estimation中文翻译An Intuitive Explanation of Convolutional Neural Networks – the data science blog为了进行人体姿态估计,我们使用一种特殊类型的全卷积网络,称为hourglass网络。网络的编解码器结构使它看起来像一个沙漏,因此被称为“hourglass networks”Hourglass网络图个人理解:.

2022-05-17 09:29:08 1666

原创 人脸识别之人脸关键点(仅供本人参考)

人脸关键点

2022-05-13 11:16:08 15235 18

转载 3D 人体姿态估计简述[转]

[转自]3D 人体姿态估计简述 - 知乎0 前言3D Human Pose Estimation(以下简称 3D HPE )的目标是在三维空间中估计人体关键点的位置。3D HPE 的应用非常广泛,包括人机交互、运动分析、康复训练等,它也可以为其他计算机视觉任务(例如行为识别)提供 skeleton 等方面的信息。关于人体的表示一般有两种方式:第一种以骨架的形式表示人体姿态,由一系列的人体关键点和关键点之间的连线构成;另一种是参数化的人体模型(如 SMPL [2]),以 mesh 形式表示人体姿态和体

2022-05-11 15:44:26 2680

转载 CVPR 2019 | 几何约束的自监督信号[转]

[转自]CVPR 2019 | 几何约束的自监督信号 - 知乎Introduction对于3D的人体姿态估计,常用的方法是two-stage的,即先训练一个从图片或视频的RGB流中估计2D关键点,再训练一个lifting network,将2D的关键点提升到3D。整个流程有很多可以讨论的地方,如自底而顶和从上至下的2D关键点估计方法的区别,还有直接从RGB流中估计3D关键点。在这里只讨论将2D提升到3D的部分。首先需要说明的是,3D人体姿态数据集的制作成本很高,并且大都在室内场景下,..

2022-05-11 15:09:07 1256

转载 无监督单视角3D人体姿态估计中的不确定性建模[转]

[转]无监督单视角3D人体姿态估计中的不确定性建模 - 知乎Introduction来自ICCV2021的工作Towards Alleviating the Modeling Ambiguity of Unsupervised Monocular 3D Human Pose Estimation。本文针对了无监督单视角3D人体姿态估计中的不确定性问题进行了研究,整个工作直指本质,实验丰富,收获很大。这个Ambiguity主要在于两部分:Scale ambiguity:在单视角中,如果没有别的约束

2022-05-11 14:58:55 542

原创 深度学习之梯度下降与优化

参考简单认识Adam优化器 - 知乎三种梯度下降算法的比较和几种优化算法 - 知乎pytorch学习系列(4):常用优化算法_ch ur h的博客-CSDN博客一、问题的提出大多数机器学习或者深度学习算法都涉及某种形式的优化。 优化指的是改变 以最小化或最大化某个函数 的任务。 我们通常以最小化 指代大多数最优化问题。我们把要最小化或最大化的函数称为目标函数或准则。 当我们对其进行最小化时,我们也把它称为代价函数、损失函数或误差函数。下面,我们假设一个损失函数为其中 ...

2022-05-09 16:25:27 3143 2

转载 深度学习之激活函数

转自[深度学习中常用激活函数总结 - 知乎]0. 前言本文总结了几个在深度学习中比较常用的激活函数:Sigmoid、ReLU、LeakyReLU以及Tanh,从激活函数的表达式、导数推导以及简单的编程实现来说明。1. Sigmoid激活函数Sigmoid激活函数表达式Sigmoid导数表达式Sigmoid编程实现Sigmoid激活函数以及导函数图像Sigmoid激活函数也叫做Logistic函数,因为它是线性回归转换为Logistic(逻辑回归)的核心函数,这

2022-05-07 15:48:32 2010

原创 深度学习之损失函数

损失函数1、什么是损失函数?一言以蔽之,损失函数(loss function)就是用来度量模型的预测值f(x)与真实值Y的差异程度的运算函数,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。-损失函数:用于衡量'单个样本点'预测值与实际值的偏离程度。-风险函数:用于衡量'样本点平均意义'下的好坏,就是说要除以batch_..

2022-05-07 15:38:58 13415

Asymptotic_stability_and_feedback_stabilization

Asymptotic_stability_and_feedback_stabilization

2018-10-11

ros by example source code kinetic

ros by example source code kinetic This ROS metapackage provides sample code used in the book ROS by Example Volume 2. Please use the ROS By Example Google Group to post questions. The code in this branch is for ROS Indigo. The accompanying book revision for ROS Hydro is available as a downloadable PDF and in paperback.

2018-07-28

ros by example source code kinetic 版本

ros by example source code kinetic 版本 只有源码,不包括电子书

2018-07-25

ros_by_example 例子代码 indigo

《ROS by Example》中的源码 rbx1是ROS By Example 1 (indigo版

2018-07-25

MIT 深度学习,理论,800页(英文)

MIT 深度学习,理论,800页(英文)

2017-08-09

libgsl.lib 文件 GSL-1.8 64bit VS2015

gsl\lib文件夹中 需转换的libgsl.lib 文件 GSL-1.8 64bit VS2015

2017-01-19

MultivacDisplay source code

MultivacDisplay source code 包括Python 3.4 源代码显示和配置文件C++ ,使用VC2010编译

2014-11-13

Multivac PyQt for Python3.4 界面程序

Multivac PyQt for Python3.4 界面程序

2014-10-29

Multivac VS2010 修改编译Ver 1.0

Multivac is a C++ object-oriented library that provides Front Tracking Algorithms. VS2010 修改编译

2014-10-16

A Contour-Oriented Approach to Digital Shape Analysis

1988 国外对图像轮廓的分析,对我们轮廓曲线研究入门有意义

2014-08-07

计算机视觉 计算理论与算法基础

计算机视觉是在图像处理的基础上发展起来的新兴学科。计算机视觉从信息处理的层次研究视觉信息的认知过程,研究视觉信息处理的计算理论、表达与计算方法。本书系统地介绍了计算机视觉的重要理论与算法,包括图像特征提取,摄像机定标,立体视觉,运动视觉(或称序列图像分析),由图像灰度恢复三维物体形状的方法,物体建模与识别方法以及距离图像分析方法等。. 本书是在作者十多年来从事计算机视觉的研究和研究生教育的基础上编写而成的,书中不仅包含了初次接触本学科的读者所需要的基础知识,也介绍了近年来国内外计算机视觉研究的重要理论研究成果。本书的大多数内容已在中国科学院北京研究生院教授多年。本书附有图像实验数据与参考实验结果,可供研究生或研究者进行实验研究。.. 本书可作为信息处理、计算机、机器人、人工智能、遥感图像处理、认知神经科学等有关专业的高年级学生或研究生的教学用书,也可供以上领域的研究工作者参考。

2014-04-02

自定义图片控件

控件主要功能 1、打开显示图片 2、鼠标缩放 3、鼠标拖动 4、显示当前像素的坐标和RGB值

2013-11-04

【数学】小波十讲(中文版)

简介 ······ <br/>  原书《小波十讲》(TenLecturesonWavelets)是一本世界范围公认的经典学术名著,是当代数学著作中一本影响巨大的绝妙好书。书中包含了20世纪80年代以来世界上有关小波分析的最先进成果,也包含Daubechies本人关于紧支撑小波的卓越成就。对于学习研究小波理论、探讨分析小波应用的人而言,此书是不可不读的基础性经典著作。该书的学术价值和学术思想受到小波分析理论主要创始人法国大数学家YMeyer的高度评价,为全世界普及、推广小波分析作出了重要贡献,国外、海外的高等院校、科研机构、著名企业研发部门的科技工作者一直将该书作为重要参考书和学习小波分析的入门图书。原书作者IngridDaubechies是小波分析的主要创始人之一,她建立了世界上第一个具有良好应用效果的小波基即Daubechies小波基。Daubechies小波基是国际上应用最广泛的小波基函数,形成JPENG2000国际标准的重要内容,从而使得小波分析成为一门真正的应用学科,并成为国际研究热点。<br/>   本书第1章对小波变换进行了概括性的描述,后续章节则进行了较详细的讲解。第2章介绍了连续小波变换,第3章介绍了离散小波变换及框架,第4章介绍了时频密度和正交基。在这几章中,论证了加窗傅里叶变换和小波变化的学多结论,并且两者是并行的,方便读者进行比较区分。第5章介绍了正交小波基和多分辨分析,第6章介绍了紧支集正交小波及子带编码,第7章介绍了紧支撑小波正则性,第8章介绍了紧支撑小波的对称性,第9章介绍了正交基是一种好的基,而且适用于许多傅里叶变换不适用的泛函空间。第10章介绍了正交小波基普遍性理论及技巧。<br/>   本书的读者对象主要是从事信号分析、信号及信息获取与处理、图象处理、通信理论、信息安全、数学、物理、计算机、医学、化学、石油地质勘测、机械工程等多方面的学术研究人员、工程技术人员、大学教师、研究生、大学生,尤其适合专门从事处理突发性问题的工程技术人员。对于有兴趣学习新学科、高科技知识的人来说,本书也是很好的入门图书。<br/><br/>作者简介 ······ <br/>  译者简介:<br/>   李建平,男,1964年10月生,湖南祁阳县人,工学博士,博士生导师,国际小波分析应用研究中心主任,国际学术期刊Internationalp Journal of Wavelet Multiresolution and Information Processing中国大陆唯一副主编,多次任国际学术大会副主席、分会主席。是国际上小波分析与信号信息处理领域专家。<br/><br/><br/><br/>目录:<br/><br/>第1章 什么是小波 <br/><br/> 1. 1 时一频定位(局部化) <br/><br/> 1. 2 小波变换:小波变换与加窗傅里叶变换的相似与不同 <br/><br/> 1. 3 不同类型的小波变换 <br/><br/> 第2章 连续小波变换(CWT) <br/><br/> 2. 1 带限函数的Shannon定理 <br/><br/> 2. 2 带限函数是再生核Hilbert空间的特例 <br/><br/> 2. 3 "时一频"限 <br/><br/> 2. 4 连续小波变换(CWT-Continuous Wavelet Transform) <br/><br/> 2. 5 连续小波变换的基础:再生核milbert空间(r. k. H. s) <br/><br/> 2. 6 高维连续小波变换 <br/><br/> 2. 7 连续窗口傅里叶变换 <br/><br/> 2. 8 通过连续变换构造有用算子 <br/><br/> 2. 9 连续小波变换作为数学变焦:局部正则性的表征 <br/><br/> 第3章 离散小波变换:框架 <br/><br/> 3. 1 小波变换的离散化 <br/><br/> 3. 2 框架的性质 <br/><br/> 3. 3 小波框架 <br/><br/> 3. 4 窗口傅里叶变换的框架 <br/><br/> 3. 5 时一频局部化 <br/><br/> 3. 6 框架中的冗余:能得到些什么? <br/><br/> 3. 7 一些结论性的注记 <br/><br/> 第4章 时-频密度和正交基 <br/><br/> 4. 1 在小波变换及窗口傅里叶变换中时一频密度的作用 <br/><br/> 4. 2 标准正交基 <br/><br/> 第5章 正交小波基与多分辨分析 <br/><br/> 5. 1 多分辨分析的基本思想 <br/><br/> 5. 2 举例 <br/><br/> 5. 3 放宽尺度函数的正交条件 <br/><br/> 5. 4 更多的例子:Battle-Lemarie小波族 <br/><br/> 5. 5 正交小波的正则性 <br/><br/> 5. 6 与子带滤波方法的联系 <br/><br/> 第6章 紧支撑小波的标准正交基 <br/><br/> 6. 1 mo的构造 <br/><br/> 6. 2 与标准正交小波基一致 <br/><br/> 6. 3 标准正交的充分必要条件 <br/><br/> 6. 4 生成正交小波基的紧支撑小波的例子 <br/><br/> 6. 5 级联算法:与重分或精细格式的联系 <br/><br/> 第7章 紧支撑小波正则性的进一步讨论 <br/><br/> 7. 1 基于傅里叶的方法 <br/><br/> 7. 2 直接法 <br/><br/> 7. 3 具有更高正则性的紧支撑小波 <br/><br/> 7. 4 正则性或消失矩 <br/><br/> 第8章 紧支撑正交小波的对称性 <br/><br/> 8. 1 紧支撑正交小波基缺乏对称性 <br/><br/> 8. 2 Coiflets <br/><br/> 8. 3 对称双正交小波基 <br/><br/> 第9章 泛函空间的小波刻划 <br/><br/> 9. 1 小波:空间Lp(R), 1<br/> 9. 2 泛函空间特征的小波刻划 <br/><br/> 9. 3 L1[(0, 1)]中的小波 <br/><br/> 9. 4 小波展开与傅里叶级数的比较 <br/><br/> 第10章 正交小波基通论及其技巧 <br/><br/> 10. 1 伸缩因子为2的多维小波基 <br/><br/> 10. 2 整数伸缩因子大于2的一维标准正交小波基 <br/><br/> 10. 3 具有矩阵伸缩因子的多维小波基 <br/><br/> 10. 4 具有非整数伸缩因子的一维标准正交小波基 <br/><br/> 10. 5 更好的频率分辨:"分裂"方法 <br/><br/> 10. 6 小波包基 <br/><br/> 10. 7 区间上的小波基

2013-06-21

LED晶粒分拣技术的机器视觉研究

论文以高速CCD相机、镜头、图像采集卡及工控机为核心组件,构建了基于机器视 觉的硬件平台,用来对图像进行采集与处理。在LED分拣设备中,晶粒的位置信息是至 关重要的,它为整个的分拣工作提供了基本参数信息。为了得到LED晶粒的位置参数, 论文中采用了基于区域灰度值的模板匹配算法。深入分析了模板匹配算法的功能及预处理 的过程。在相应的匹配工作基础上要对图像进行区域的分割,进而改变图像的表示方法, 并对图像像素进行再组织,形成更高级的表示单元。区域分割是一个集合划分的过程,它 只是把相似的像素划分到不同的区域中,分割得到的区域仍然有很多冗余信息为了消除这 些冗余信息,在此提出了感兴趣区域来描述图像。它可以增强图像对比度,能显著的描述 物体的轮廓和形状,并在一定程度上消除了图像的冗余信息,突出图像的主要内容

2013-06-17

三维物体识别

二维平面视图可通过普通 CCD 相机获取,数据来源要求不高。基于外观 (Appearance-based)或基于视图(View-based)的三维物体识别算法研究,近来 成为人们研究的热点。基于视图的方法通过视觉相似性来识别物体,使得识别系 统设计相对简单,无需显式计算物体的三维模型。另外一方面,基于局部特征匹 配的方法考虑了视图间的局部相似性,不要求匹配所有视图特征,即使物体被部 分遮挡,也有可能检测到局部特征,并完成识别,对于物体的重叠和背景杂波表 现出较好的稳健性。本文研究了基于二维视图和基于局部特征提取匹配的三维物 体识别,及其在智能视频监控系统中的应用,改进了卡尔曼滤波器多目标跟踪性

2013-06-17

图像测量系统及关键技术研究

图像测量,是建立在计算机视觉理论基础上的新测量技 术,是以光学为基础,融光电子学 计算机技术 激光技术 图 像处理技术等现代科学技术为一体,光 机电与计算机相结合 的测量系统 图像测量把图像当作检测和传递信息的手段或 载体加以利用,通过处理被测图像而获得所需的各种参数,是 将图像处理技术应用于测量领域的一种新的测量方法 随着 计算机技术 数字图像处理技术和光电技术的发展,图像测量 技术得到越来越广泛的应用

2013-06-17

多尺度几何分析在图像边缘检测中的应用

多尺度几何边缘是图像的重要特征,其中包含了图像大量的信息。边缘检测的效果将直 接影响到图像的分割和模式的识别。传统的图像边缘检测算法大多是基于点的检 测算法,只能在很少的几个方向搜索边缘,不能有效地利用图像的几何正则性。 多尺度几何分析法能够更好的利用图像的几何正则性。本论文通过对多尺度 几何分析中各种变换方法的比较,选择应用Beamlet变换和Wedgelet变换对图像进 行处理,研究图像边缘检测的新算法。主要研究工作包括两部分内容:一是基于 多尺度几何分析构建图像边缘检测的新算法;二是在嵌入式平台上对新算法进行 物理验证,并对算法进行优化。 分析在图像边缘检测中的应用

2013-06-17

小波变换教程

小波变换教程,通俗介绍,国外翻译的 欢迎来到这个小波变换的入门教程。小波变换是一个相对较新的概念(大概十年的 ) , 但是有关于它的文章和书籍却不少 。 这其中大部分都是由搞数学的人写给其他搞数 人看的 , 不过 , 仍然有大部分搞数学的家伙不知道其他同行们讨论的是什么 ( 我的一个 教授就承认过 ) 。 换言之 , 大多数介绍小波变换的文献对那些小波新手们来说用处不大 仅为个人观点)。

2013-06-14

小波变换入门

小波变换入门,国外人写的,入门可以,比较清楚

2013-06-14

基于边缘检测和Hough变换的车牌定位系统的研究与实现

基于边缘检测和Hough变换的车牌定位系统的研究与实现

2013-06-14

Canny边缘检测算法原理及其VC实现详解

Canny边缘检测算法原理及其VC实现详解

2013-06-14

CoDeSys+2[1].3+中文教程(学习PLC编程的最好教程).pdf

CoDeSys+2[1].3+中文教程(学习PLC编程的最好教程).pdf

2010-10-20

GB 50089-2007 民用爆破器材工程设计安全规范

GB 50089-2007 民用爆破器材工程设计安全规范

2010-02-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除