今天这道题是一道简单的dp题说实话很好想到解法,就是用两个dp来回倒换即可解除,然后也没啥难度所以就不解释了,养成一个好习惯就是设置数组的时候需要malloc动态获取即可,然后使用memset进行初始化,注意memset只能进行0的初始化,如果是字符串或者初始化成其他的数字我建议用for其他也没啥需要强调的
给定一个非负索引 rowIndex,返回「杨辉三角」的第 rowIndex 行。
在「杨辉三角」中,每个数是它左上方和右上方的数的和。
示例 1:
输入: rowIndex = 3
输出: [1,3,3,1]
示例 2:输入: rowIndex = 0
输出: [1]
示例 3:输入: rowIndex = 1
输出: [1,1]
提示:
0 <= rowIndex <= 33
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/pascals-triangle-ii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
/**
* Note: The returned array must be malloced, assume caller calls free().
*/
int* getRow(int rowIndex, int* returnSize){
if(rowIndex==0)
{
int *dp1=(int*)malloc(sizeof(int)*(1));
dp1[0]=1;
*returnSize=1;
return dp1;
}
int i,j;
int *dp1=(int*)malloc(sizeof(int)*(rowIndex+1));
int *dp2=(int*)malloc(sizeof(int)*(rowIndex+1));
//int dp1[rowIndex+1],dp2[rowIndex+1];
*returnSize=rowIndex+1;
memset(dp1,0,sizeof(dp1));
memset(dp2,0,sizeof(dp2));
dp1[0]=1,dp1[1]=1,dp2[0]=1;
for(i=2;i<=rowIndex;i++)
{
for(j=1;j<i;j++)
{
dp2[j]=dp1[j]+dp1[j-1];
}
dp2[i]=1;
for(j=1;j<=i;j++)
{
dp1[j]=dp2[j];
}
}
for(int k=0;k<=rowIndex;k++)
{
printf("%d ",dp1[k]);
}
return dp1;
}
错了一次是没有考虑到0的存在。。。。。大意了