简单的滑动平均算法matlab代码

分享一个自编的滑动平均代码,和matlab自带的smooth效果一致,直接上代码:

function sm=MA(data,N)
L=length(data);
if rem(N,2)==0
   N=N+1; 
end
for i=1:L
    if i==1
        sm(i,:)=data(i);
    elseif i==L
        sm(i,:)=data(end);
    elseif i>1&&i<=floor(N/2)
        sm(i,:)=mean(data(1:(i+i-1))); 
    elseif i<L&&i>=L-floor(N/2)
        sm(i,:)=mean(data(end:-1:(i-(L-i))));
    else
        sm(i,:)=mean(data(i-floor(N/2):(i+floor(N/2))));   
    end
end
end
clc;
clear;
close all;
data=dlmread('文件地址');
figure
plot(data,'g');
hold on
sm=smooth(data,5);
plot(sm,'r');
hold on
sm2=MA(data,5);
plot(sm2,'--b');
hold on

滑动平均算法是一种对数据进行平滑处理的方,可以用于降低噪声或抽取数据的趋势。在MATLAB中,可以使用以下代码实现滑动平均滤波算法: ```matlab function x1 = MovingAverageFilter(x, win_sz) % x: 待滑动平均的数据 % win_sz: 窗宽 if nargin < 2 % 默认窗宽为7 win_sz = 7; end L = length(x); % 数据长度 x1 = zeros(L, 1); % 平均后的数据 half_win = ceil(win_sz/2); half_win_ = floor(win_sz/2); if half_win == half_win_ half_win = half_win + 1; end x1(1:half_win) = x(1:half_win); x1(L-half_win:L) = x(L-half_win:L); for i = half_win:L-half_win k = 0; for j = i-half_win_ : i+half_win_ % 对第i个窗口里面的数求平均 k = k + 1; temp(k) = x(j); % 临时存储第i个窗口的数据 end x1(i) = mean(temp); % 第i个窗口里面的平均值给第i个数 end end ``` 这段MATLAB代码实现了滑动平均滤波算法,其中`x`是待滑动平均的数据,`win_sz`是窗口宽度。函数会首先根据窗口宽度对边缘数据进行保留,然后对每个窗口内的数据进行平均计算,并将平均值赋给对应的数据点。最后返回平均后的数据`x1`。 你可以通过调用这个函数来使用滑动平均滤波算法对数据进行平滑处理。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [M-point moving-average(M点滑动平均)Matlab 实现](https://blog.csdn.net/qq_52309640/article/details/120476695)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [滑动平均滤波matlab程序](https://download.csdn.net/download/weixin_38739225/12195389)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [滑动平均滤波算法——MATLAB实现](https://blog.csdn.net/baidu_38963740/article/details/111705114)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值