计算机考研面试常问专业课问题(自用)

报名院校双非自命题,复试是计算机综合面试+上机,应对考试补一下408常用基本知识点,双非一般不会问很深的东西,所以本篇没什么含金量,自用

1.操作系统常问知识点

1.OS定义

OS是系统资源的管理者、向上层用户、应用提供方便易用服务、是最接近硬件的一层软件

2. OS功能

处理机管理、存储器管理、文件管理、设备管理

3. OS特征

并发、共享、虚拟、异步(并发和共享是OS最基本特征,互为存在条件;虚拟和异步以并发和共享为前提)

4. 什么是原语

一种程序,具有原子性,其操作只能一气呵成,运行时间段=短且调用频繁

5. 并发与并行的区别

同一时间间隔是并发,同一时刻是并行

6. OS发展历程

手工→单道批处理→多道批处理(OS正式诞生,无交互)→分时(有交互,无法处理紧急事件)→实时(可以处理紧急事件)

7. 中断的作用

用户转变为核心态的唯一方式、可以让OS强行夺回CPU控制权

8. 内中断与外中断

内中断:异常,与当前执行指令有关,来自CPU内部

外中断:与当前无关,来自外部

9. 系统调用分类

设备管理、文件管理、进程控制、进程通信、内存管理

凡是与共享资源有关的操作,会直接影响其他进程的操作,都需要OS介入,通过系统调用实现

10. 什么是进程

进程是拥有资源的基本单位,进程是动态的,是程序的执行,是暂时的

实质是程序在多道程序系统中的一次执行过程

特性:动态性、并发性、独立性、异步性

记住状态图:运行态、就绪态、阻塞态、创建状态、结束状态

11. 什么是线程

线程是独立调度的基本单位,同一进程中线程的切换不会引起进程的切换,线程不拥有资源。

12. PCB是进程存在的唯一标识

13. 什么是宏内核

将OS主要功能模块都作为系统内核,运行在内核态。高性能,但结构混乱难以维护

14. 什么是微内核

只把最基本功能保留在内核。结构清晰易于维护,但需要在内核态和用户态频繁切换,性能低。

15. 处理机调度

三级调度:高级(作业调度)、中级(内存调度)、低级(进程调度)

调度算法:

抢占式:时间片轮转(RR)、多级反馈队列、优先级调度(也有非抢占式的类型)

非抢占式:先来先服务(FCFS)、短作业优先(SJF)、高响应比优先(HRRN)

多级反馈队列算法和短作业优先算法可能会导致饥饿

16. 什么是死锁、死锁产生的原因是什么、如何解决死锁

两个以上进程在执行过程中因争夺资源产生的互相等待的现象,如果没有外力,进程将无法推进的一种局面

原因:系统资源不足、进程推进顺序不当

避免死锁:安全状态、银行家算法

17. 分段和分页的区别

分段基于程序逻辑划分可变长内存,分页采用固定大小物理块实现灵活内存管理。

18. 什么是段寄存器

段寄存器存储内存段的基地址和属性,用于CPU在分段机制中寻址和内存访问保护。

19.常用的存储保护方法

界限寄存器:上下界寄存器方法;基址、限长寄存器方法

存储及保护键

2. 计算机网络

1. 七层网络结构

物理层、数据链路层、网络层、传输层、会话层、表示层、应用层

2. TCP/IP结构

网络接口层、网际层、运输层、应用层

3. IPV4和IPV6位数

32位和128位

4. 数据链路层作用

链路管理、封装成帧、透明传输、差错检测

5. 列举下数据连路程的协议

 局域网:CSMA/CD

广域网:PPP(点对点),HDLC(高级数据链路控制协议)

6.三网是哪三网

电信网、广播电视网、互联网

7. 组成网络协议的三要素

语义、语法、同步

8.什么是网络拥塞,如何控制

网络中存在太多数据包导致数据包延迟或者被丢失,导致整个网络传输性能降低。

控制拥塞的算法:

慢开始算法、拥塞避免算法、快重传算法、快恢复算法

9.什么是非对称加密

非对称加密使用公钥和私钥配对,公钥加密数据,私钥解密,确保通信安全与身份验证。

3.其他类

最近有的导师喜欢问机器学习的东西,稍微记录一点东西。

说一个你知道的常见机器学习的算法。

支持向量机(SVM)

SVM(Support Vector Machine)是一种监督学习算法,主要用于分类(也可用于回归,称为SVR)。

其核心思想是:

  1. 最大间隔超平面:在特征空间中找到一个最优的超平面,将不同类别的数据分开,且该平面到最近样本点(支持向量)的距离(间隔)最大。

  2. 支持向量:离超平面最近的样本点,决定了超平面的位置和方向。

  3. 核技巧(Kernel Trick):对于线性不可分的数据,通过核函数(如线性、多项式、高斯核)将数据映射到高维空间,使其线性可分。

  4. 软间隔与硬间隔

    • 硬间隔:严格分类所有样本,可能过拟合。

    • 软间隔:允许少量样本分类错误,提升模型鲁棒性(通过松弛变量和惩罚参数 C 控制)

常用于图像识别和文本分类。适合小样本和高维数据。

举一个通俗的例子:

想象你要在菜市场分土豆和西红柿

  1. 目标:找一条最宽的“马路”(分界线),把土豆和西红柿彻底分开。

  2. 关键规则:这条马路的宽度要最大,并且马路边缘必须碰到至少几个“典型样本”(比如特别圆的土豆或特别红的西红柿),这些样本就叫支持向量

  3. 如果混在一起分不开(比如土豆和西红柿被捣成泥了):

    • 找个“魔法镜子”(核函数),把烂泥倒进镜子里的高维空间(比如三维),突然发现它们在空中能用一个“大平板”分开。

  4. 允许犯错:如果有一两个土豆掉进西红柿堆,只要不影响大局,可以睁一只眼闭一只眼(软间隔)。

总结:SVM就是用最宽的安全距离分类,分不开就升维打击

决策树(Decision Tree)

定义
决策树是一种基于树形结构的监督学习算法,通过一系列规则对数据进行分类或回归。其结构包含根节点、内部节点(特征判断)和叶节点(决策结果)。

原理

  1. 核心思想

    • 递归地将数据按特征划分,使子集尽可能“纯净”(同类样本多)。

    • 关键指标

      • 信息增益(ID3算法):基于信息熵减少量选择特征。

      • 基尼不纯度(CART算法):衡量数据的不纯度,值越小纯度越高。

      • 信息增益率(C4.5算法):解决信息增益对多取值特征的偏好。

  2. 构建过程

    • 分裂节点:选择最大化纯度提升的特征和分割点(如“年龄>30”)。

    • 终止条件:样本全属同一类、达到最大深度、纯度提升不足等。

    • 剪枝:后剪枝(如代价复杂度剪枝)防止过拟合。

应用场景:分类任务,回归任务,预测分析。

通俗解释:

  1. 核心目标:把杂乱的数据按特征分成“泾渭分明”的小组。

    • 比如买水果,目标是快速区分苹果和橙子。

  2. 关键步骤

    • 第一步:问最有效的问题
      先问一个能最大程度区分两类的问题,比如“颜色是红色吗?”(如果是红色,更可能是苹果)。

    • 第二步:重复提问
      对分出来的小组继续提问,比如“表面光滑吗?”(苹果通常更光滑)。

    • 第三步:停止条件
      直到无法再区分(比如分到全是苹果或全是橙子的小组),停止提问,给出结论。

  3. 防止“钻牛角尖”
    如果一直问太细的问题(比如“重量是152克还是153克?”),虽然分得很准,但遇到新水果可能判断错。这时要简化规则(比如剪掉不重要的判断)。

一句话总结

决策树就像一个自动化的流程图,通过问一系列“是否”问题,一步步把数据分到最合适的类别里。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值