报名院校双非自命题,复试是计算机综合面试+上机,应对考试补一下408常用基本知识点,双非一般不会问很深的东西,所以本篇没什么含金量,自用
1.操作系统常问知识点
1.OS定义
OS是系统资源的管理者、向上层用户、应用提供方便易用服务、是最接近硬件的一层软件
2. OS功能
处理机管理、存储器管理、文件管理、设备管理
3. OS特征
并发、共享、虚拟、异步(并发和共享是OS最基本特征,互为存在条件;虚拟和异步以并发和共享为前提)
4. 什么是原语
一种程序,具有原子性,其操作只能一气呵成,运行时间段=短且调用频繁
5. 并发与并行的区别
同一时间间隔是并发,同一时刻是并行
6. OS发展历程
手工→单道批处理→多道批处理(OS正式诞生,无交互)→分时(有交互,无法处理紧急事件)→实时(可以处理紧急事件)
7. 中断的作用
用户转变为核心态的唯一方式、可以让OS强行夺回CPU控制权
8. 内中断与外中断
内中断:异常,与当前执行指令有关,来自CPU内部
外中断:与当前无关,来自外部
9. 系统调用分类
设备管理、文件管理、进程控制、进程通信、内存管理
凡是与共享资源有关的操作,会直接影响其他进程的操作,都需要OS介入,通过系统调用实现
10. 什么是进程
进程是拥有资源的基本单位,进程是动态的,是程序的执行,是暂时的。
实质是程序在多道程序系统中的一次执行过程
特性:动态性、并发性、独立性、异步性
记住状态图:运行态、就绪态、阻塞态、创建状态、结束状态
11. 什么是线程
线程是独立调度的基本单位,同一进程中线程的切换不会引起进程的切换,线程不拥有资源。
12. PCB是进程存在的唯一标识
13. 什么是宏内核
将OS主要功能模块都作为系统内核,运行在内核态。高性能,但结构混乱难以维护
14. 什么是微内核
只把最基本功能保留在内核。结构清晰易于维护,但需要在内核态和用户态频繁切换,性能低。
15. 处理机调度
三级调度:高级(作业调度)、中级(内存调度)、低级(进程调度)
调度算法:
抢占式:时间片轮转(RR)、多级反馈队列、优先级调度(也有非抢占式的类型)
非抢占式:先来先服务(FCFS)、短作业优先(SJF)、高响应比优先(HRRN)
多级反馈队列算法和短作业优先算法可能会导致饥饿
16. 什么是死锁、死锁产生的原因是什么、如何解决死锁
两个以上进程在执行过程中因争夺资源产生的互相等待的现象,如果没有外力,进程将无法推进的一种局面
原因:系统资源不足、进程推进顺序不当
避免死锁:安全状态、银行家算法
17. 分段和分页的区别
分段基于程序逻辑划分可变长内存,分页采用固定大小物理块实现灵活内存管理。
18. 什么是段寄存器
段寄存器存储内存段的基地址和属性,用于CPU在分段机制中寻址和内存访问保护。
19.常用的存储保护方法
界限寄存器:上下界寄存器方法;基址、限长寄存器方法
存储及保护键
2. 计算机网络
1. 七层网络结构
物理层、数据链路层、网络层、传输层、会话层、表示层、应用层
2. TCP/IP结构
网络接口层、网际层、运输层、应用层
3. IPV4和IPV6位数
32位和128位
4. 数据链路层作用
链路管理、封装成帧、透明传输、差错检测
5. 列举下数据连路程的协议
局域网:CSMA/CD
广域网:PPP(点对点),HDLC(高级数据链路控制协议)
6.三网是哪三网
电信网、广播电视网、互联网
7. 组成网络协议的三要素
语义、语法、同步
8.什么是网络拥塞,如何控制
网络中存在太多数据包导致数据包延迟或者被丢失,导致整个网络传输性能降低。
控制拥塞的算法:
慢开始算法、拥塞避免算法、快重传算法、快恢复算法
9.什么是非对称加密
非对称加密使用公钥和私钥配对,公钥加密数据,私钥解密,确保通信安全与身份验证。
3.其他类
最近有的导师喜欢问机器学习的东西,稍微记录一点东西。
说一个你知道的常见机器学习的算法。
支持向量机(SVM)
SVM(Support Vector Machine)是一种监督学习算法,主要用于分类(也可用于回归,称为SVR)。
其核心思想是:
-
最大间隔超平面:在特征空间中找到一个最优的超平面,将不同类别的数据分开,且该平面到最近样本点(支持向量)的距离(间隔)最大。
-
支持向量:离超平面最近的样本点,决定了超平面的位置和方向。
-
核技巧(Kernel Trick):对于线性不可分的数据,通过核函数(如线性、多项式、高斯核)将数据映射到高维空间,使其线性可分。
-
软间隔与硬间隔:
-
硬间隔:严格分类所有样本,可能过拟合。
-
软间隔:允许少量样本分类错误,提升模型鲁棒性(通过松弛变量和惩罚参数
C
控制)
-
常用于图像识别和文本分类。适合小样本和高维数据。
举一个通俗的例子:
想象你要在菜市场分土豆和西红柿:
-
目标:找一条最宽的“马路”(分界线),把土豆和西红柿彻底分开。
-
关键规则:这条马路的宽度要最大,并且马路边缘必须碰到至少几个“典型样本”(比如特别圆的土豆或特别红的西红柿),这些样本就叫支持向量。
-
如果混在一起分不开(比如土豆和西红柿被捣成泥了):
-
找个“魔法镜子”(核函数),把烂泥倒进镜子里的高维空间(比如三维),突然发现它们在空中能用一个“大平板”分开。
-
-
允许犯错:如果有一两个土豆掉进西红柿堆,只要不影响大局,可以睁一只眼闭一只眼(软间隔)。
总结:SVM就是用最宽的安全距离分类,分不开就升维打击!
决策树(Decision Tree)
定义
决策树是一种基于树形结构的监督学习算法,通过一系列规则对数据进行分类或回归。其结构包含根节点、内部节点(特征判断)和叶节点(决策结果)。
原理
-
核心思想
-
递归地将数据按特征划分,使子集尽可能“纯净”(同类样本多)。
-
关键指标:
-
信息增益(ID3算法):基于信息熵减少量选择特征。
-
基尼不纯度(CART算法):衡量数据的不纯度,值越小纯度越高。
-
信息增益率(C4.5算法):解决信息增益对多取值特征的偏好。
-
-
-
构建过程
-
分裂节点:选择最大化纯度提升的特征和分割点(如“年龄>30”)。
-
终止条件:样本全属同一类、达到最大深度、纯度提升不足等。
-
剪枝:后剪枝(如代价复杂度剪枝)防止过拟合。
-
应用场景:分类任务,回归任务,预测分析。
通俗解释:
-
核心目标:把杂乱的数据按特征分成“泾渭分明”的小组。
-
比如买水果,目标是快速区分苹果和橙子。
-
-
关键步骤:
-
第一步:问最有效的问题
先问一个能最大程度区分两类的问题,比如“颜色是红色吗?”(如果是红色,更可能是苹果)。 -
第二步:重复提问
对分出来的小组继续提问,比如“表面光滑吗?”(苹果通常更光滑)。 -
第三步:停止条件
直到无法再区分(比如分到全是苹果或全是橙子的小组),停止提问,给出结论。
-
-
防止“钻牛角尖”
如果一直问太细的问题(比如“重量是152克还是153克?”),虽然分得很准,但遇到新水果可能判断错。这时要简化规则(比如剪掉不重要的判断)。
一句话总结
决策树就像一个自动化的流程图,通过问一系列“是否”问题,一步步把数据分到最合适的类别里。