使用求和公式求1到N的累加和大家都会,但是如果把N值变大呢,比如100位的整数,那该怎么求?
输入格式:
输入在一行中给出1个位数不超过100位的整数N。
输出格式:
对每一组输入,在一行中输出1+2+3+……+N的值。
输入样例:
在这里给出一组输入。例如:
10
输出样例:
在这里给出相应的输出。例如:
55
个人思路 :
由于是高精度累加,累加的次数和数字都太大了,不能用常规的办法。
我们可以想到高斯公式,(首项加末项)乘项数除以2 。首项是1,末项是n,项数是n。对于计算的过程我们又要用到高精度乘法和高精度除法。
高精度乘法:高精度乘法(c++实现)_星河边采花的博客-CSDN博客
高精度除法:高精度除法 (c++实现)_星河边采花的博客-CSDN博客
AC代码:
#include <bits/stdc++.h>
using namespace std;
#define N 1024
vector<int> div(vector<int>& A, int b, int& r)
{
vector<int> C;
r = 0;
for (int i = A.size() - 1; i >= 0; i--)
{
r = r * 10 + A[i];
C.push_back(r / b);
r %= b;
}
reverse(C.begin(), C.end());
while (C.size() > 1 && C.back() == 0) C.pop_back();
return C;
}
int main() {
string s;
cin >> s;
int l = s.size();
int ll = l * 2;
int r = 0;
int a[N], b[N], c[N] = {0};
for (int i = 0; i < l; i++) {
a[i] = s[l - i - 1] - '0';
b[i] = s[l - i - 1] - '0';
}
b[0] += 1;
for (int i = 0; i < l; i++) {
for (int j = 0; j < l; j++) {
c[i + j] += a[i] * b[j];
}
}
for (int i = 0; i < ll; i++) {
if (c[i] >= 10) {
c[i + 1] += c[i]/10;
c[i] %= 10;
}
}
while (ll > 0 && c[ll] == 0) ll--;
vector<int> rex;
for (int i = 0; i <= ll; i++) {
rex.push_back(c[i]);
}
vector<int> result = div(rex, 2, r);
for (int i = result.size() - 1; i >= 0; i--) cout << result[i];
return 0;
}