L2-007 家庭房产分数 25作者 陈越单位 浙江大学

给定每个人的家庭成员和其自己名下的房产,请你统计出每个家庭的人口数、人均房产面积及房产套数。

输入格式:

输入第一行给出一个正整数N(≤1000),随后N行,每行按下列格式给出一个人的房产:

编号 父 母 k 孩子1 ... 孩子k 房产套数 总面积

其中编号是每个人独有的一个4位数的编号;分别是该编号对应的这个人的父母的编号(如果已经过世,则显示-1);k(0≤k≤5)是该人的子女的个数;孩子i是其子女的编号。

输出格式:

首先在第一行输出家庭个数(所有有亲属关系的人都属于同一个家庭)。随后按下列格式输出每个家庭的信息:

家庭成员的最小编号 家庭人口数 人均房产套数 人均房产面积

其中人均值要求保留小数点后3位。家庭信息首先按人均面积降序输出,若有并列,则按成员编号的升序输出。

输入样例:

10
6666 5551 5552 1 7777 1 100
1234 5678 9012 1 0002 2 300
8888 -1 -1 0 1 1000
2468 0001 0004 1 2222 1 500
7777 6666 -1 0 2 300
3721 -1 -1 1 2333 2 150
9012 -1 -1 3 1236 1235 1234 1 100
1235 5678 9012 0 1 50
2222 1236 2468 2 6661 6662 1 300
2333 -1 3721 3 6661 6662 6663 1 100

输出样例:

3
8888 1 1.000 1000.000
0001 15 0.600 100.000
5551 4 0.750 100.000

思路:

        这是一道并查集应用问题,这道题需要维护每个集合内的人数,房产套数,房产面积。

        这三个信息其实是同一类型的,用三个数组就可以维护。

        最多有10010个数据,一开始想离散化,但发现离散化后就找不到原来的id了,而且数也没那么大,没必要离散化。

代码:

#include <bits/stdc++.h>
using namespace std;
const int N = 10010;
int n,m,k;
double num, area;
int p[N], siz[N];
double rnum[N], rarea[N];
bool st[N];
struct peo {
    int id;
    double rnum, rarea;
}pe[N];
int find(int x) {
    if (p[x] != x)p[x] = find(p[x]); 
    return p[x];
}
bool cmp(peo p1, peo p2) {
    if (p1.rarea == p2.rarea)return p1.id < p2.id;
    return p1.rarea > p2.rarea;
}
int main()
{
    for (int i = 0; i < N; i++) {
        p[i] = i;
        siz[i] = 1;
    }
    cin >> n;
    for (int i = 0; i < n; i++) {
        vector<int> res;
        int id, fid, mid, k;
        cin >> id >> fid >> mid >> k;
        st[id] = true;
        res.push_back(find(id));
        if (fid != -1) {
            st[fid] = true;
            res.push_back(find(fid));
        }
        if (mid != -1) {
            st[mid] = true;
            res.push_back(find(mid));
        }
        for (int j = 0; j < k; j++) {
            int x;
            cin >> x;
            st[x] = true;
            res.push_back(find(x));
        }
        cin >> num >> area;
        sort(res.begin(), res.end());
        res.erase(unique(res.begin(), res.end()), res.end());
        rnum[res[0]] += num;
        rarea[res[0]] += area;
        for (int j = 1; j < res.size(); j++) {
            siz[res[0]] += siz[res[j]];
            p[res[j]] = res[0];
            rnum[res[0]] += rnum[res[j]];
            rarea[res[0]] += rarea[res[j]];
        }
    }
    int j = 0;
    for (int i = 0; i < N; i++) {
        if (st[i]) {
            if (find(i) == i) {
                pe[j].id = i;
                pe[j].rnum = rnum[i] / siz[i];
                pe[j].rarea = rarea[i] / siz[i];
                j++;
            }
        }
    }
    sort(pe, pe + j, cmp);
    cout << j<<endl;
    for (int i = 0; i < j; i++) {
        printf("%04d %d %.3lf %.3lf\n", pe[i].id, siz[pe[i].id], pe[i].rnum, pe[i].rarea);
    }
    return 0;
}

### 广度优先遍历算法的实现及应用 #### 1. 基本概念 广度优先遍历(Breadth-First Search, BFS)是一种用于图结构的搜索算法,其核心思想是从某个起点开始逐层扩展,先访问离起点最近的所有节点后再逐步深入更远的节点。这种策略类似于二叉树的层次遍历[^2]。 在具体操作上,BFS 使用队列来存储待访问的节点。每次从队列中取出一个节点并将其标记为已访问状态,随后将该节点的所有未访问邻居加入队列等待后续处理。通过这种方式可以确保按距离顺序逐一访问所有可达节点。 #### 2. C++中的实现方式 以下是基于C++语言的一个典型实现案例,其中利用了标准模板库(STL)中的`queue`容器以及布尔数组记录节点访问情况: ```cpp #include <iostream> #include <vector> #include <queue> using namespace std; void bfs(int start, vector<vector<int>> &adjMatrix, int n){ vector<bool> visited(n, false); // 初始化全部节点为未访问 queue<int> q; cout << "访问顺序: "; visited[start]=true; // 将起始点设为已访问 q.push(start); while(!q.empty()){ int u=q.front(); // 取出当前要探索的节点 q.pop(); cout<<u<<" "; // 输出此节点编号 for (int i=0;i<n;i++) { // 查找与此节点相连且尚未访问过的其他节点 if(adjMatrix[u][i]==1 && !visited[i]){ visited[i]=true; // 设置新找到的相邻节点为已访问 q.push(i); // 加入队列以便之后继续查找他们的连接关系 } } } } int main(){ int nodesCount=11; // 定义总共有多少个节点 vector<vector<int>> adjMat(nodesCount,vector<int>(nodesCount)); /* 构建邻接矩阵 */ // 这省略实际赋值过程... bfs(0, adjMat,nodesCount); // 开始于第零号节点执行bfs函数 return 0; } ``` 上述代码片段展示了如何构建一个简单的无向图并通过调用 `bfs()` 函数完成对该图的一次完整的广度优先遍历。注意这假设输入数据已经形成了正确的邻接矩阵形式表示法[^1]。 #### 3. 应用场景分析 - **最短路径求解**: 对于非加权图而言,BFS能够有效地找出两个特定顶点之间的最小边数即所谓的"最短路径". - **连通分量检测**: 当面对大规模稀疏网络时,可以通过多次启动不同源点上的独立BFS流程快速判断哪些部分属于同一个强联通子集. - **拓扑排序辅助工具**: 在某些特殊情况下也可以配合栈或者其他额外的数据结构一起工作从而达成更加复杂的任务目标比如计算DAG(directed acyclic graph)内的线性排列方案等等[^3]. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

星河边采花

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值