【算法】背包问题(Knapsack problem)

69c325734da3451085e4a1f3478b3453.png

01背包问题

递归

对于每一个物品,如果他的重量不在承载范围内,就跳过此物品;如果他的重量在承载范围内,可以有两个选择:放或不放。对这两种方案得到的价格取大者,然后对下一个物品进行同样操作,从而能得到最终的最高价格。于是按照这个思路可以采取递归的算法实现。

自定义一个函数ks(n,c)  其中n用于控制遍历的下标,当n==-1时意味着所有物品都操作完毕,给result赋值0,结束递归。c用于记录当前的背包承重大小,当c==0时意味着背包刚好全部放满,那么这时候同样结束递归。这里采取从后往前的遍历,所以n的初始值是len(w)-1即最后一个物品的下标,c的初始值就是背包的承重total。

if-elif-else的分支结构判断了:是否退出递归,当前物品不能放,当前物品能放

具体看以下代码

w = [1,2,4,2,5]
v = [5,3,5,3,2]
def ks(n,c):
    if n == -1 or c == 0:
        result=0
    elif w[n]>c:
        result = ks(n-1,c)
    else:
        tmp1 = ks(n-1,c)
        tmp2 = v[n] + ks(n-1,c-w[n])
        result = max(tmp1,tmp2)
    return result
total = int(input())
n = len(w)-1
print(ks(n,total))

动态规划

算法思路

创建一个二维dp表,每个格子dp[i][j]所代表的意思是

前 i 个物品在容量不超过 j 的情况下能取得的最大价值。

所以在定义的时候我们可以直接把所有格子设为0.

dp=[[0 for i in range(V+1)] for j in range(N+1)]

接下来就是填表,每一个格子的值都由他前一个格子所决定,当填到格子dp[N][V]也就是最右下角的格子,这就是我们要的答案。

我们对每一个物品限额进行遍历,对于每一个物品i,用j遍历每种不同的背包容量,对于每一种限额的背包,会有如下情况:

  1. 他不能放入背包:即这个物品的容量超出了当前背包的容量限额,因此把这个格子填上从上从前一个格子继承的价值,因为不放入第j个物品,那么他的价值就是放入前j-1个物品时能达到的最大价值dp[i-1][j]
  2. 他可以放入背包:但是你可以有两种选择
  • 不放入背包:那么就把这个格子填上从上一个格子继承的价值 dp[i-1][j]
  • 放入背包:这时候你需要考虑放入后容量的变化,在放入之后,背包可能还会有一些空余的容量是j-volume[i-1],对于这个容量的背包,找到其在存放当前物品之前,也就是i-1的时候,所能达到的最大价值dp[i-1][j-volume[i-1]]然后加上当前这个物品的价值price[i-1]

最后从这两种选择中选择价值大的情况填入。

 上面的volume[i-1]和price[i-1]为什么要减1?因为我们把物品数据存放起来的时候下标是从0开始的而填表时真正开始向背包装物品是在i和j为1的时候。

代码实现

python3和C++代码

N,V=map(int, input().split())
volume=[]
price=[]
dp=[[0 for i in range(V+1)] for j in range(N+1)]
for i in range(N):
    v,p=map(int, input().split())
    volume.append(v)
    price.append(p) 
for i in range(1,N+1):
    for j in range(1,V+1):
        if volume[i-1]<=j:
            dp[i][j]=max(dp[i-1][j],dp[i-1][j-volume[i-1]]+price[i-1])
        else:
            dp[i][j]=dp[i-1][j]
print(dp[N][V])
#include <bits/stdc++.h>
using namespace std;
int main()
{
    int N, V;
    cin >> N >> V;
    vector<int> volume(N, 0);
    vector<int> price(N, 0);
    vector<vector<int>> dp(N + 1, vector<int>(V + 1, 0));
    for (int i = 0; i < N; ++i)
        cin >> volume[i] >> price[i];
    for (int i = 1; i <= N; ++i)
    {
        for (int j = 1; j <= V; ++j)
        {
            if (volume[i - 1] <= j)
                dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - volume[i - 1]] + price[i - 1]);
            else
                dp[i][j] = dp[i - 1][j];
        }
    }
    cout << dp[N][V] << endl;
    return 0;
}

转一维

#include <bits/stdc++.h>
using namespace std;
int main() {
    int N, V;
    cin >> N >> V;
    vector<int> w(N + 1), p(N + 1);
    vector<int> dp(V + 1, 0);
    for (int i = 1; i <= N; i++) {
        cin >> w[i] >> p[i];
    }
    for (int i = 1; i <= N; i++) {
        for (int j = V; j >= w[i]; j--) {
            dp[j] = max(dp[j], dp[j - w[i]] + p[i]);
        }
    }
    cout << dp[V] << endl;
    return 0;
}

完全背包问题

完全背包问题和0-1背包的本质区别就是,完全背包的一个物品可以选择任意多次(每次递推到第i个物品的状态时,就算选了一次第i个物品,我后续还是可以选它),所以状态转移方程和0-1背包的区别就是,完全背包是i,0-1背包是i-1(i代表可选物品的范围)

代码实现

N, V = map(int, input().split())
w = []
p = []
dp = [[0 for i in range(V + 1)] for j in range(N + 1)]
for i in range(N):
    a, b = map(int, input().split())
    w.append(a)
    p.append(b)
for i in range(1, N + 1):
    for j in range(1, V + 1):
        dp[i][j] = dp[i - 1][j]  # 不选择当前物品
        k = 0
        while k * w[i - 1] <= j:  #选择当前物品k次
            dp[i][j] = max(dp[i][j], dp[i-1][j-k*w[i-1]]+k*p[i - 1])
            k += 1
print(dp[N][V])
#include <bits/stdc++.h>
using namespace std;
int main()
{
    int N, V;
    cin >> N >> V;
    vector<int> volume(N, 0);
    vector<int> price(N, 0);
    vector<vector<int>> dp(N + 1, vector<int>(V + 1, 0));
    for (int i = 0; i < N; ++i)
        cin >> volume[i] >> price[i];
    for (int i = 1; i <= N; ++i)
    {
        for (int j = 1; j <= V; ++j)
        {
            dp[i][j] = dp[i - 1][j];
            int k=0;
            while(k*volume[i-1]<=j){
                dp[i][j]=max(dp[i][j],dp[i-1][j-k*volume[i-1]]+k*price[i-1]);
                k++;
            }
        }
    }
    cout << dp[N][V] << endl;
    return 0;
}

转一维

#include <bits/stdc++.h>
using namespace std;
int main() {
    int N, V;
    cin >> N >> V;
    vector<int> w(N + 1), p(N + 1);
    vector<int> dp(V + 1, 0);
    for (int i = 1; i <= N; i++) {
        cin >> w[i] >> p[i];
    }
    for (int i = 1; i <= N; i++) {
        for (int j = w[i]; j <= V; j++) {
            dp[j] = max(dp[j], dp[j - w[i]] + p[i]);
        }
    }
    cout << dp[V] << endl;
    return 0;
}

两种背包问题的代码对比

左边的是01背包问题,右边的是完全背包问题

其实差别仅仅是内层for循环的条件。

  • 01背包问题 使用反向遍历,确保每个物品在每次遍历中仅被考虑一次。
  • 完全背包问题 使用正向遍历,允许每个物品被多次考虑,适应物品的多次选择情况。
  • 7
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值