SCAU---18440 走迷宫

Description 

有一个N*M(N,M<=10)的格子迷宫,1代表该格子为墙,不能通过,0代表可以通过,人在迷宫中可以尝试上下左右四个方向移动。
另外,在迷宫中如果从左边走出迷宫会回到迷宫最右边一格(只要该格不是墙),行不变,同样,从右边走出迷宫会
回到迷宫最左边一格,向上走出迷宫会回到迷宫最下边一格,向下走出迷宫会回到迷宫最上边一格。
现在给定一个迷宫,以及起点和终点,问最少多少步可以走出迷宫。如果不能走出迷宫输出“die”。

输入格式

该程序为多CASE,第1行为CASE的数量
每一个CASE,第1行为两个数N(行)和M(列)
然后N行每行M个数,之后是起点坐标和终

输入样例

2
4 3
011
010
110
110
0 0 3 2
2 2
01
10
0 0 1 1

输出样例

4
die

我看到网上都是使用栈DFS和队列BFS来做这道题,但是做法其实是不符合题意的。本题要求最短的路径,所以涉及到比较关系。

迷宫问题使用记忆化搜索算法和动态规划算法求解是很好的选择。这里使用记忆化搜索。

递归的终止条件:

1、当前坐标mapp[y][x] == '1'时,返回一个大数,这里随便写了个10000

2、当前坐标为起始点,x==sc && y==sr,返回0

递归体:

1、遍历过的点map[y][x]赋值为‘1’

2、记忆化搜索查询dp[y][x]是否有答案,有则返回,没有则递归

3、来到当前点的最短路径dp[y][x]等于四个方向的最短路径 + 1

4、返回dp[y][x]

int n,m;
char map[11][11];
int dp[11][11];

int pocess(int x, int y, int sc, int sr)
{
	if(x == -1)
		x = m-1;
	else if(x == m)
		x = 0;
	if(y == -1)
		y = n-1;
	else if(y == n)  
		y = 0;	
	if(map[y][x] == '1')
		return 10000;
	if(x==sc && y==sr)
		return 0;

	map[y][x] = '1';
	if(dp[y][x] != -1)
		return dp[y][x];

	dp[y][x] = 	min(min(pocess(x+1, y, sc , sr), pocess(x-1, y, sc , sr)),
					min(pocess(x, y+1, sc , sr), pocess(x, y-1, sc , sr)))
				+1;

    return dp[y][x];
	}

int main()
{	
	int t;
	cin >> t;
	while(t--)
	{
		cin >> n >> m;
		memset(map,1,sizeof(map));
		memset(dp,-1,sizeof(dp));
		int sc,sr,ec,er;
		for(int i=0; i<n; i++)
		{	
			string t;
			cin >> t;
			strcpy(map[i], t.c_str());
		}	
		cin >> sr >> sc >> er >> ec;
		pocess(ec,er,sc,sr);
        if(dp[er][ec] != 10001)
            cout << dp[er][ec] << endl;
        else
            cout << "die" << endl;
    }

	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值