Description
有N个士兵站成一队列, 现在需要选择几个士兵派去侦察。 为了选择合适的士兵, 多次进行如下操作: 如果队列超过三个士兵, 那么去除掉所有站立位置为奇数的士兵, 或者是去除掉所有站立位置为偶数的士兵。直到不超过三个战士,他们将被送去侦察。现要求统计按这样的方法,总共可能有多少种不同的正好三个士兵去侦察的士兵组合方案。 注: 按上法得到少于三士兵的情况不统计。 1 <= N <= 2的32次方-1
输入格式
有多行(可能有上百行,尽量优化代码),每行一个数字N,最后一行是0
输出格式
对每一行的数字N,输出针对N的方案数 直到没有数字
输入样例
10 4 0
输出样例
2 0
个人思路:
对一整个队列,要重复的对这个队列进行奇数去除和偶数去除操作,很简单的可以想到暴力递归。
注释已经写的很清楚了。
base case:当人数不足3的时候,无法组成巡逻的可能,返回0
当人数刚刚好为3时,返回一种巡逻可能
递归体: 返回奇数去除操作加上偶数去除操作的和就是答案。
#include <iostream>
#include <cstring>
using namespace std;
int pocess(int n)
{
if(n < 3) //当人数小于3,组成0种可能
return 0;
if(n == 3) //当人数刚好等于3,返唯一的1种可能
return 1;
if(n%2 == 0) //当人数为偶数,返回选择奇数的一半可能+选择偶数的一半可能
return 2*pocess(n/2);
else //当人数为奇数,同样返回选择奇数的一半可能+选择偶数的一半可能
return pocess(n/2) + pocess(n/2 + 1);
}
int main()
{
while(true)
{
int n;
cin >> n;
if(n == 0)
return 0;
cout << pocess(n) << endl;
}
return 0;
}