背包问题(多重背包&混合背包)

背包问题(多重背包&混合背包)

1.多重背包

多重背包问题的思路跟完全背包的思路非常类似,只是k的取值是有限制的,因为每件物品的数量是有限制的,状态转移方程为:

dp[i][v] = max{dp[i - 1][v - k * c[i]] + w[i] | 0 <=k <= n[i]}  

    其中c[i]是物品的数量,和完全背包的不同支出在于完全背包可以取无数件,而多重背包给定了最多能取的数量。这样也是三个循环,分别是背包容量,物品个数和物品种类。这样如果数量比较多的情况,很明显这个做法也会超时,所以我们也要想更优化的方法去完善。

    转化为01背包求解:把第i种物品换成n[i]件01背包中的物品。考虑二进制的思想,考虑把第i种物品换成若干件物品,使得原问题中第i种物品可取的每种策略——取0..n[i]件——均能等价于取若干件代换以后的物品。另外,取超过n[i]件的策略必不能出现。

    方法是:将第i种物品分成若干件物品,其中每件物品有一个系数,这件物品的费用和价值均是原来的费用和价值乘以这个系数。使这些系数分别为1,2,4,...,2^(k-1),n[i]-2^k+1,且k是满足n[i]-2^k+1>0的最大整数。例如,如果n[i]为13,就将这种物品分成系数分别为1,2,4,6的四件物品。

    分成的这几件物品的系数和为n[i],表明不可能取多于n[i]件的第i种物品。另外这种方法也能保证对于0..n[i]间的每一个整数,均可以用若干个系数的和表示

代码(信息学奥赛一本通T1269):

#include <iostream>
using namespace std;
int v[510], w[510], s[510], dp[6100];
int main()
{
    int n, m;
    cin >> n >> m;
    for (int i = 1; i <= n; ++i)
    {
        cin >> v[i] >> w[i] >> s[i];
    }

    for (int i = 1; i <= n; ++i)
    {
        for (int j = m; j >= 1; --j)
        {
            for (int k = 0; k <= s[i] && j >= k * v[i]; ++k)
            {
                //第i个物品拿k个的循环
                dp[j] = max(dp[j], dp[j - k * v[i]] + k * w[i]);//拿or不拿
            }
        }
    }
    cout << dp[m]; 
    return 0;
}
  1. 混合背包

有N种物品和一个容量为V的背包。第i种物品最多有n件可用,每件体积是c,价值是w。求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大。

基本算法

这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物品有n+1种策略:取0件,取1件……取 n件。令f[v]表示前i种物品恰放入一个容量为v的背包的最大权值,则:f[v]=max{f[v-k*c]+ k*w|0<=k<=n}。复杂度是O(V*∑n)。

转为问题

另一种好想好写的基该方法是转化为01背包求解:把第i种物品换成n件01背包中的物品,则得到了物品数为∑n的01背包问题,直接求解,复杂度仍然是O(V*∑n)。

但是我们期望将它转化为01背包问题之后能够像完全背包一样降低复杂度。仍然考虑二进制的思想,我们考虑把第i种物品换成若干件物品,使得原问题中第i种物品可取的每种策略——取0..n件——均能等价于取若干件代换以后的物品。另外,取超过n件的策略必不能出现。

方法是:将第i种物品分成若干件物品,其中每件物品有一个系数,这件物品的费用和价值均是原来的费用和价值乘以这个系数。使这些系数分别为 1,2,4,...,2^(k-1),n-2^k+1,且k是满足n-2^k+1>0的最大整数。例如,如果n为13,就将这种物品分成系数分别为1,2,4,6的四件物品。

代码(信息学奥赛一本通T1270):

#include<cstdio>
#include<iostream>
using namespace std;
int n,m;
int w[31],c[31],p[31];
int f[201];
int main()
{
    cin >> m >> n;
    for(int i = 1 ; i <= n; ++i)
    cin >>w[i] >> c[i] >>p[i];
    for(int i = 1; i <= n; ++i)
    if(p[i] == 0)//完全背包
    {
        for(int j = w[i];j <= m; ++j)
        f[j] = max(f[j],f[j-w[i]]+c[i]);
    }
    else
    {
        for(int j = 1; j <= p[i] ; j++)//01背包和多重背包
            for(int k = m; k >= w[i]; --k)
                f[k] = max(f[k],f[k - w[i]]+c[i]);
    }
    printf("%d",f[m]);
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值