OCR 低性能下运行理论

        目前的OCR算法都是针对性服务器或者GPU  对CPU或者移动端的友好型比较低

这个时候,我们就应该拓展思路,让本身不富裕的CPU承载我们现在在增加的功能,是岌岌可危的所以接下来的验证就是OCR是否能毫秒级的在移动端执行,用较差的lua实现呢?

1.OCR目前的理论都是八个自由度  这个自由度的问题 出现一个问题 就是很浪费时间 大一点 处理200*200的数据的时候(仅仅测试一部分)200~800毫秒  这个时候加上二值化 有时候就超出了一秒的时间范畴之内的 我们应该想法解决这个问题

        目前我的解办法 是根据 最常用的 波率方式进行切割后 ,但是然后就不知道怎么处理了,因为有很多设想和思路在里面.

        一.我设想的是进行轮廓辨别文字,但是问题是也必须要把他进行归一化才能真正的实现无视大小的问题,这个时候我加进来的东西很有可能会出现时间问题,因为我们在这里面要求的是毫秒级的识别,当然识别的时候 还要优化  这个先不提,二值化目前也需要优化,优化的不是识别 是其他方面的现在没必要提起,新型二值化 对不清晰的文体 都有很好的识别 不过要对时间也会有所增加成本,不过这都是必要的

        二.我的思路比较乱 也没有整理 这个就是草稿 整理完成后会有一篇 比较整洁的文章发布,不会像现在这里这么乱,做文章和写代码一样 我现在没有任何心情去研究  但是我也放不下  我希望以后会有很好的进步 目前思路 应该是能够识别了  下一篇文章应该也属于草稿文章  研究成功

        三.手写和机器识别文章 不能用同样的手法和算法进行识别 这里要区分的 否则 为了适应手写或者机器的特殊性,而影响另外一个算法 是不被认可的  也是一个写作者的耻辱(我是新手)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值