题目描述:
给定一个无重复元素的正整数数组 candidates
和一个正整数 target
,找出 candidates
中所有可以使数字和为目标数 target
的唯一组合。
candidates
中的数字可以无限制重复被选取。如果至少一个所选数字数量不同,则两种组合是不同的。
对于给定的输入,保证和为 target
的唯一组合数少于 150
个。
示例 1:
输入: candidates = [2,3,6,7], target = 7 输出: [[7],[2,2,3]]
示例 2:
输入: candidates = [2,3,5], target = 8 输出: [[2,2,2,2],[2,3,3],[3,5]]
示例 3:
输入: candidates = [2], target = 1 输出: []
示例 4:
输入: candidates = [1], target = 1 输出: [[1]]
示例 5:
输入: candidates = [1], target = 2 输出: [[1,1]]
解题思路:
对于给定我们的目标target可以由数组candidates中的元素组成,这些组成元素可以是重复的,因此不能和常规的遍历搜索一样,不能这个数搜索过就不再搜索。
如给我们的目标为8,数组中含有[2,3,5],我们首先考虑2,将2存入list数组的时候,list数组的总和只有2,小于target8。继续搜索,我们下一次搜索还需要从头开始,即任然需要考虑2,再次将2存入,此时list总和为4,再次搜索……直到list中为[2,2,2,2],这时候总和等于target,将结果存入ans中
。
重点:因为我们需要考虑所有的可行解,因此需要回溯,即将list中最后一个元素删除,这时候将最后一个2从list中删除,然后考虑数组的3,但是[2,2,2,3]不符合target。将3删除,在考虑5,同样不符合条件,在将5删除。这时候list中有[2,2,2]。退出第四个位置的搜索,我们到第三个位置的最后,这时候将2从list中删除,考虑给入3,此时list[2,2,3],在进入第四个位置搜索……都不符合条件。
根据上述分析,我们可以得出规律。在这个过程中,我们要确定退出的条件,当我们list总和等于target的时候,我们需要退出并且将结果存入,当list小于target时,继续搜素。当list大于target时,此时也需要退出,但是结果不存入。
public static void dfs(int[] candidates,int curSum,int target,List<Integer> list,List<List<Integer>> res,int cur){
//返回条件
if(curSum>=target){ //如果比目标值大也是不符合条件,需要退出
if(curSum==target){ //相等的情况就是符合条件的
res.add(new ArrayList<>(list));
}
return;
}
//调用条件,依次将数字加入,但是不进行标记,将target修改
for(int i=cur;i<candidates.length;i++){
list.add(candidates[i]);
dfs(candidates, curSum+candidates[i], target,list, res, i);
//回溯--确保能够出现多种结果
list.remove(list.size()-1);
}
}
public static List<List<Integer>> combinationSum(int[] candidates, int target) {
List<List<Integer>> res=new ArrayList<List<Integer>>();
List<Integer> list=new ArrayList<>();
int curSum=0;
//从0位置开始探索
dfs(candidates, curSum,target,list, res,0);
return res;
}