医学影像研究 | 3D病灶ROI精准提取:一键生成标准化病灶立方体,文末附代码

在医学影像分析中,最耗时费力的从不是算法设计,而是数据标注。传统病灶勾画需要医生在数百层CT影像中逐层描绘病灶轮廓,单个病例耗时可达30分钟。但如果我们告诉你:只需标注病灶中心点(x,y,z),就能自动提取标准化3D病灶区域——效率提升超50倍,且完美适配影像组学和深度学习!

(文末将附上完整即插即用的Python代码,供大家参考和使用。👇

今天介绍的这套方法,正是为解决“标注难”这一行业痛点而生。它不要求勾画完整轮廓,只需在单层CT上点击病灶中心(或通过PACS系统获取坐标),即可智能提取病灶的三维ROI。

为什么选择中心点标注方案?

1. 标注效率革命

  • 传统方法:放射科医生需在每层CT上勾画边界,20层病灶≈15分钟

  • 本方案:仅需在病灶最大层面标记中心点(x,y,z),耗时<5秒

坐标记录样例,以ITK-SNAP软件为例:

图片

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值