耦合动力系统网络 (networks of coupled dynamical systems) 被广泛用于自组织系统 (self-organizing systems) 建模, 其连接拓扑结构常被认为是完全规则或完全随机的, 但事实证明大量生物、技术与社交网络的结构介于二者之间.
Watts & Strogatz (1998) 提出了一个对介于完全规则与完全随机之间的网络结构进行建模的简单模型, 即著名的WS小世界模型
Newman & Watts (1999) 认为该模型在分析上存在一些问题, 主要是平均距离的定义不明确. 因为边的随机化重连可能导致网络的不连通, 这会使得某些节点之间的距离变为无穷, 从而导致网络的平均距离也为无穷. 显然, 这无法保证生成的小世界网络具有较短的平均路径长度.
当然, 在技术上可以通过对节点数
与初始边数之间的关系进行约束来保证连通性, 但在模型层面, 网络的连通性仍然是无法保证的.
为此, 他们提出了新的小世界网络生成算法, 即NW小世界模型. 该模型的构造过程仍然是从规则网络开始的, 与WS模型一致, 不同之处在于它将WS模型的随机化重连变成了随机化加边. 具体来说, 该算法的步骤为:
构造规则网络: 从具有个节点的零图开始, 令其绕成一个环, 每个节点分别与左右两边相邻的个节点相连, 其中为偶数;
边的随机添加:对于规则网络的每一条边, 依概率随机选择一个节点, 并添加新边至网络中.
通过上述步骤, 便完成了NW小世界网络的构造. 相关研究表明, 当足够大时, NW模型与WS模型完全等价.
需要注意的是, NetworkX库中对NW模型的实现与原始文献是存在差别的, 原始文献明确表明, 允许自环和重边的存在以简化网络分析, 但NetworkX中仍然排除掉了自环与重边.