PINN物理信息网络 | 物理信息神经网络求解固体力学案例

本文介绍了物理信息神经网络(PINNs)如何结合物理定律与神经网络,用于解决复杂的固体力学问题,如梁弯曲问题。PINNs通过学习物理规律来近似求解,定义输入输出、构建网络结构、设定损失函数并训练网络,从而预测位移和应力分布。尽管PINNs在该领域仍需优化,但它们为固体力学问题的求解提供了新的途径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

物理信息神经网络(Physics-Informed Neural Networks,PINNs)是一种结合了物理定律和神经网络学习能力的工具,旨在解决复杂的物理问题。在固体力学领域,PINNs的应用可以通过模拟和预测固体的位移、应力、应变等力学行为,为工程设计和分析提供新的解决方案。

以下是一个简化的物理信息神经网络求解固体力学的案例:

案例:梁弯曲问题的PINNs求解

假设我们有一个简单的梁弯曲问题,需要求解在给定载荷下的梁的位移和应力分布。传统的固体力学方法可能会涉及复杂的数学公式和边界条件,而PINNs可以通过学习梁弯曲的物理规律来近似求解这个问题。

问题定义:首先,我们需要定义问题的输入和输出。在这个案例中,输入可能是梁的长度、截面形状、材料属性以及施加的载荷,而输出则是梁的位移和应力分布。
网络结构:接下来,我们构建一个物理信息神经网络。这个网络应该能够学习梁弯曲的物理规律,并根据输入参数预测输出。网络的结构可能包括多个隐藏层,每个隐藏层包含一定数量的神经元。
损失函数:损失函数是PINNs的关键部分,它结合了物理规律和神经网络的学习能力。在这个案例中,损失函数可能包括两部分:一部分是预测位移和应力与真实值之间的误差,另一部分是物理约束条件(如梁的弯曲方程)的违反程度。
训练过程:使用一组已知的梁弯曲问

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab建模攻城师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值