D - Number of Shortest paths (最短路径的条数 BFS)

该博客主要介绍了如何利用广度优先搜索(BFS)算法解决图论问题,具体是计算从源点到所有其他顶点的最短路径的条数。在给定的无权图中,每条边的权重被设为1,通过BFS遍历更新节点的距离和最短路径计数,最终得到最短路径总数。
摘要由CSDN通过智能技术生成

题目链接
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

每条边的边权都是1,对于每个从 v 有一条边的 u ,如果我们还没有访问过 u ,将 dis [ u ] 更新为 dis [ v ] + 1 并将 cnt [ u ] 加上 cnt [ v ] ;如果我们已经访问过 u 并且 dis [ u ] = dis [ v ] + 1 ,则只将 cnt [ u ] 加上 cnt [ v ]即可 ;否则,跳过。
最后cnt [ n ] 即是最短路条数

#include <bits/stdc++.h>
using namespace std;
#define mem(a, b) memset(a, b, sizeof(a))
#define ll long long int
#define endl '\n'
typedef pair<int, int> PII;
const int mod = 1e9 + 7;
const int inf = 0x3f3f3f3f;
const int N = 1e6 + 7;
 
int Head[N], Edge[N], Next[N], idx;
void add(int a, int b) {
    idx++;
    Edge[idx] = b;
    Next[idx] = Head[a];
    Head[a] = idx;
}
 
int n, m;
int dis[N], cnt[N];
int vis[N];
void bfs(int s) {
    queue<int> q;
    dis[s] = 0;
    q.push(s);
    vis[s] = 1;
    cnt[s] = 1;
    while (!q.empty()) {
        int t = q.front();
        q.pop();
        for (int i = Head[t]; ~i; i = Next[i]) {
            int e = Edge[i];
            if (!vis[e]) {
                dis[e] = dis[t] + 1;
                cnt[e] = cnt[t];
                q.push(e);
                vis[e] = 1;
            } else if (vis[e] && dis[e] == dis[t] + 1)
                cnt[e] = (cnt[e] + cnt[t]) % mod;
        }
    }
}
signed main() {
    mem(Head, -1);
    cin >> n >> m;
    for (int i = 1; i <= m; i++) {
        int u, v;
        cin >> u >> v;
        add(u, v);
        add(v, u);
    }
    bfs(1);
    cout << cnt[n] << endl;
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值