WCE的相关文献学习三

第九篇:使用对应匹配和运动分析的无线胶囊内窥镜视频序列中的去冗余

De-redundancy in wireless capsule endoscopy video sequences using correspondence matching and motion analysis

目的:使用CNN进行WCE图像的去冗余

方法:使用SS-VCF-Der,分析WCE的运动去除冗余。自监督学习视频帧间视觉对应表示,并预测流畅。流程①使用SS-VCF利用颜色的自然时空一致性和时间周期一致性通过像素的移动来形成流场。②判断帧的运动强度和连续帧的变化强度。③SS-VCF-MI根据是否发生场景变化的强度阈值去冗余。④保留关键帧。文献中除了叙述SS-VCF-Der方法,还对比解释了几种不同方式的自监督,如视频着色、TimeCycle、对应流等。流场使用的是对应匹配,分析了WCE运动的强度。

特别地:SS-VCF模型一种基于光流的CNN:利用帧的运动关系进行自监督的卷积神经网络。使用前向-后向循环一致性损失、视觉相似性损失和颜色损失来训练和优化模型。

结果:产生流场估计,计算两个连续帧之间的运动强度作为提取的运动特征,并利用提出的SS-VCF-MI去冗余方法选择一些帧作为局部邻域中场景变化不同的关键帧,以实现去冗余任务。模拟场景,定量定性去验证了实验结果。

注:有代码。学习指数9。4区Q2.

第十篇:基于特征融合与SVM的内镜图像分类算法研究

目的:用一种新的融合方法实现特征融合进行内镜图像分类,即遗传算法。

方法:通过提取颜色矩和灰度共生矩获取图像的颜色和纹理,再VGG16和Resnet152提取深层特征,进行以上融合。然后使用遗传算法获得最优特征,并将最优特征训练SVM。

特别地:使用了遗传算法对特征进行筛选。

注:不知道遗传算法怎么使用的。学习指数7

第十一篇:基于深度学习的内窥镜图像诊断胃肠道疾病的预测模型

Deep learning-based prediction model for diagnosing gastrointestinal diseases using endoscopy images

目的:使用卷积神经网络(CNN)对胃肠道疾病的诊断。即是使用CNN将WCE图像进行分类,分为息肉、溃疡性结肠炎、食管炎、正常四类。

方法:对比四种CNN分类方法,基线CNN、VGG16、InceptionV3、ResNet50。使用的数据集是KVASIR。

特别地:ROC是估计模型区分不同类型数据的能力。有实验方案流图。

结果:使用ResNet50预训练模型权重的CNN模型在诊断胃肠道疾病时,在训练集上实现了约99.80%的最高平均准确率(100%精度和约99%召回率),验证集和其他测试集的准确度分别为99.50%和99.16%。与其他现有系统相比,所提出的 ResNet50 模型优于所有系统。

注:有ResNet50预测模型。可学习指数8.5。2区 Q1。

第十二篇:无线胶囊内镜图像中的自监督分布外检测

Self-supervised out-of-distribution detection in wireless capsule endoscopy images

目的:使用自监督OOD检测对WCE图像进行分类

方法:首先,训练一个三重网络来学习WCE图像补丁的向量表示。其次,对补丁嵌入进行聚类,根据视觉相似性对补丁进行分组。第三,使用集群分配作为伪标签来训练补丁分类器,并使用神经网络分布外检测器(ODIN)进行OOD检测。

特别地:使用自监督特征提取网络来生成嵌入,然后应用聚类算法,为每个样本分配一个标签,稍后用于训练分类器。自监督无需标记图像。

结果:定量和定性结果表明,该系统成功检测出淋巴管扩张、异物和血液显示等病变。此外,该方法基于补丁的性质能够测量图像每个区域的异常。ODIN对更微妙的异常(如糜烂、血管扩张或红斑)不太敏感。

注:学习指数9。1区Q1。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值