二分查找--这一篇就够了(

目录

二分查找简介

工作原理

时间复杂度

空间复杂度

二分查找模板

例题

例题1 木材加工

题目背景

题目描述

输入格式

输出格式

输入输出样例

说明/提示数据规模与约定

 例题2 砍树

题目描述

输入格式

输出格式

输入输出样例

说明/提示


二分查找简介

将一个有序数列分为两截,如果搜寻目标元素>中间元素,则取后半截,反之取前半截,重复

工作原理

以在一个升序数组中查找一个数为例。

它每次考察数组当前部分的中间元素,如果中间元素刚好是要找的,就结束搜索过程;如果中间元素小于所查找的值,那么左侧的只会更小,不会有所查找的元素,只需到右侧查找;如果中间元素大于所查找的值同理,只需到左侧查找。

时间复杂度

二分查找的最优时间复杂度为O(1) 。

二分查找的平均时间复杂度和最坏时间复杂度均为 O(logn)。因为在二分搜索过程中,算法每次都把查询的区间减半,所以对于一个长度为n 的数组,至多会进行 O(logn) 次查找。

空间复杂度

迭代版本的二分查找的空间复杂度为O(1) 。

递归(无尾调用消除)版本的二分查找的空间复杂度为O(logn) 。

二分查找模板

while(left<right) {
			int mid = (left+right+1)>>1;
			if (check(mid)>=M) {
				left=mid;
			}else {
				right=mid-1;
			}
		}
static long check(int mid) {
		long sum = 0;
		for (int i = 1; i <=N; i++) {
			if (tree[i]>mid) {
				sum+=(tree[i]-mid);
			}
		}
		return sum ;
	}

例题

例题1 木材加工

题目背景

要保护环境

题目描述


木材厂有 n根原木,现在想把这些木头切割成 k 段长度均为 l的小段木头(木头有可能有剩余)。

当然,我们希望得到的小段木头越长越好,请求出 l的最大值。

木头长度的单位是 cm,原木的长度都是正整数,我们要求切割得到的小段木头的长度也是正整数。

例如有两根原木长度分别为 11 和 21,要求切割成等长的 6 段,很明显能切割出来的小段木头长度最长为 5。

输入格式


第一行是两个正整数 n,k分别表示原木的数量,需要得到的小段的数量。

接下来 n行,每行一个正整数 Li​,表示一根原木的长度。

输出格式


仅一行,即 l的最大值。

如果连1cm 长的小段都切不出来,输出 0。

输入输出样例


输入 #1

3 7
232
124
456
输出 #1

114


说明/提示
数据规模与约定


对于 100% 的数据,有 1≤n≤10^5 , 1≤k≤10^8,1≤Li≤10^8(i∈[1,n])

import java.util.Scanner;

public class 木材加工 {
	static int n;
	static int k;
	static int tree[] = new int[10000];
	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		n = sc.nextInt();//原木数量
		k = sc.nextInt();//小段数量
		int left = 0;//左指针
		int right = 0;//右指针
		for (int i = 1; i <=n ; i++) {
			tree[i]=sc.nextInt();
			right=Math.max(right, tree[i]);//右指针指向最大长度
		}
		while (left<right) {
			int mid = (left+right+1)>>1;//对mid/2然后向上取整   (l+r+1)中的+1是为了防止死循环
			if (check(mid)>=k) {//不断缩小区间的范围
				left=mid;
			}else {
				right=mid-1;
			}
		}
		System.out.println(left);
	}
	//对段数进行求和
	static long check(int mid) {
		long sum = 0;
		for (int i = 1; i <=n ; i++) {
			if (tree[i]>mid) {
				sum+=tree[i]/mid;
			}
		}
		return sum;
	}
}

 例题2 砍树

题目描述


伐木工人 Mirko 需要砍 M 米长的木材。对 Mirko 来说这是很简单的工作,因为他有一个漂亮的新伐木机,可以如野火一般砍伐森林。不过,Mirko 只被允许砍伐一排树。

Mirko 的伐木机工作流程如下:Mirko 设置一个高度参数 H(米),伐木机升起一个巨大的锯片到高度 H,并锯掉所有树比 H 高的部分(当然,树木不高于 H 米的部分保持不变)。Mirko 就得到树木被锯下的部分。例如,如果一排树的高度分别为 20,15,10 和 17,Mirko 把锯片升到 15 米的高度,切割后树木剩下的高度将是 15,15,10 和 15,而 Mirko 将从第 1 棵树得到 5 米,从第 4 棵树得到 2 米,共得到 7 米木材。

Mirko 非常关注生态保护,所以他不会砍掉过多的木材。这也是他尽可能高地设定伐木机锯片的原因。请帮助 Mirko 找到伐木机锯片的最大的整数高度 H,使得他能得到的木材至少为 M 米。换句话说,如果再升高 1 米,他将得不到 M 米木材。

输入格式


第 1 行 2 个整数 N 和 M,N 表示树木的数量,M 表示需要的木材总长度。

第 2 行 N 个整数表示每棵树的高度。

输出格式


1 个整数,表示锯片的最高高度。

输入输出样例


输入 #1

4 7
20 15 10 17
输出 #1

15
输入 #2

5 20
4 42 40 26 46
输出 #2

36


说明/提示


对于 100% 的测试数据,1≤N≤10^6,1≤M≤2×10^9,树的高度 <10^9,所有树的高度总和 >M。
 

import java.io.*;

public class 砍树 {
	static int n = 1000010;
	static int[] tree=new int[n];
	static int N ;
	static long M;
	//快读模板
	static class Reader {
		public BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
		public StreamTokenizer st = new StreamTokenizer(br);
		public void token() {
			try {
				st.nextToken();
			} catch (IOException e) {
				
			}
		}
		public int nextInt() {
			token();
			return (int)st.nval;
		}
		public String next() {
			token();
			return st.sval;
		}
	}
	
	public static void main(String[] args) {
		Reader sc = new Reader();
		N=sc.nextInt();
		M=sc.nextInt();
		int left = 0;
		int right = 0;
		for (int i = 1; i <=N; i++) {
			tree[i]=sc.nextInt();
			right = Math.max(right, tree[i]);
		}
		while(left<right) {
			int mid = (left+right+1)>>1;
			if (check(mid)>=M) {
				left=mid;
			}else {
				right=mid-1;
			}
		}
		System.out.println(left);
	}
	static long check(int mid) {
		long sum = 0;
		for (int i = 1; i <=N; i++) {
			if (tree[i]>mid) {
				sum+=(tree[i]-mid);
			}
		}
		return sum ;
	}
}

 分享给大家一句话:

“今天不想跑,所以才去跑”---村上春树

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

4444l

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值