目录
二分查找简介
将一个有序数列分为两截,如果搜寻目标元素>中间元素,则取后半截,反之取前半截,重复
工作原理
以在一个升序数组中查找一个数为例。
它每次考察数组当前部分的中间元素,如果中间元素刚好是要找的,就结束搜索过程;如果中间元素小于所查找的值,那么左侧的只会更小,不会有所查找的元素,只需到右侧查找;如果中间元素大于所查找的值同理,只需到左侧查找。
时间复杂度
二分查找的最优时间复杂度为O(1) 。
二分查找的平均时间复杂度和最坏时间复杂度均为 O(logn)。因为在二分搜索过程中,算法每次都把查询的区间减半,所以对于一个长度为n 的数组,至多会进行 O(logn) 次查找。
空间复杂度
迭代版本的二分查找的空间复杂度为O(1) 。
递归(无尾调用消除)版本的二分查找的空间复杂度为O(logn) 。
二分查找模板
while(left<right) {
int mid = (left+right+1)>>1;
if (check(mid)>=M) {
left=mid;
}else {
right=mid-1;
}
}
static long check(int mid) {
long sum = 0;
for (int i = 1; i <=N; i++) {
if (tree[i]>mid) {
sum+=(tree[i]-mid);
}
}
return sum ;
}
例题
例题1 木材加工
题目背景
要保护环境
题目描述
木材厂有 n根原木,现在想把这些木头切割成 k 段长度均为 l的小段木头(木头有可能有剩余)。当然,我们希望得到的小段木头越长越好,请求出 l的最大值。
木头长度的单位是 cm,原木的长度都是正整数,我们要求切割得到的小段木头的长度也是正整数。
例如有两根原木长度分别为 11 和 21,要求切割成等长的 6 段,很明显能切割出来的小段木头长度最长为 5。
输入格式
第一行是两个正整数 n,k分别表示原木的数量,需要得到的小段的数量。接下来 n行,每行一个正整数 Li,表示一根原木的长度。
输出格式
仅一行,即 l的最大值。如果连1cm 长的小段都切不出来,输出 0。
输入输出样例
输入 #13 7
232
124
456
输出 #1114
说明/提示
数据规模与约定
对于 100% 的数据,有 1≤n≤10^5 , 1≤k≤10^8,1≤Li≤10^8(i∈[1,n])
import java.util.Scanner;
public class 木材加工 {
static int n;
static int k;
static int tree[] = new int[10000];
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
n = sc.nextInt();//原木数量
k = sc.nextInt();//小段数量
int left = 0;//左指针
int right = 0;//右指针
for (int i = 1; i <=n ; i++) {
tree[i]=sc.nextInt();
right=Math.max(right, tree[i]);//右指针指向最大长度
}
while (left<right) {
int mid = (left+right+1)>>1;//对mid/2然后向上取整 (l+r+1)中的+1是为了防止死循环
if (check(mid)>=k) {//不断缩小区间的范围
left=mid;
}else {
right=mid-1;
}
}
System.out.println(left);
}
//对段数进行求和
static long check(int mid) {
long sum = 0;
for (int i = 1; i <=n ; i++) {
if (tree[i]>mid) {
sum+=tree[i]/mid;
}
}
return sum;
}
}
例题2 砍树
题目描述
伐木工人 Mirko 需要砍 M 米长的木材。对 Mirko 来说这是很简单的工作,因为他有一个漂亮的新伐木机,可以如野火一般砍伐森林。不过,Mirko 只被允许砍伐一排树。Mirko 的伐木机工作流程如下:Mirko 设置一个高度参数 H(米),伐木机升起一个巨大的锯片到高度 H,并锯掉所有树比 H 高的部分(当然,树木不高于 H 米的部分保持不变)。Mirko 就得到树木被锯下的部分。例如,如果一排树的高度分别为 20,15,10 和 17,Mirko 把锯片升到 15 米的高度,切割后树木剩下的高度将是 15,15,10 和 15,而 Mirko 将从第 1 棵树得到 5 米,从第 4 棵树得到 2 米,共得到 7 米木材。
Mirko 非常关注生态保护,所以他不会砍掉过多的木材。这也是他尽可能高地设定伐木机锯片的原因。请帮助 Mirko 找到伐木机锯片的最大的整数高度 H,使得他能得到的木材至少为 M 米。换句话说,如果再升高 1 米,他将得不到 M 米木材。
输入格式
第 1 行 2 个整数 N 和 M,N 表示树木的数量,M 表示需要的木材总长度。第 2 行 N 个整数表示每棵树的高度。
输出格式
1 个整数,表示锯片的最高高度。
输入输出样例
输入 #14 7
20 15 10 17
输出 #115
输入 #25 20
4 42 40 26 46
输出 #236
说明/提示
对于 100% 的测试数据,1≤N≤10^6,1≤M≤2×10^9,树的高度 <10^9,所有树的高度总和 >M。
import java.io.*;
public class 砍树 {
static int n = 1000010;
static int[] tree=new int[n];
static int N ;
static long M;
//快读模板
static class Reader {
public BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public StreamTokenizer st = new StreamTokenizer(br);
public void token() {
try {
st.nextToken();
} catch (IOException e) {
}
}
public int nextInt() {
token();
return (int)st.nval;
}
public String next() {
token();
return st.sval;
}
}
public static void main(String[] args) {
Reader sc = new Reader();
N=sc.nextInt();
M=sc.nextInt();
int left = 0;
int right = 0;
for (int i = 1; i <=N; i++) {
tree[i]=sc.nextInt();
right = Math.max(right, tree[i]);
}
while(left<right) {
int mid = (left+right+1)>>1;
if (check(mid)>=M) {
left=mid;
}else {
right=mid-1;
}
}
System.out.println(left);
}
static long check(int mid) {
long sum = 0;
for (int i = 1; i <=N; i++) {
if (tree[i]>mid) {
sum+=(tree[i]-mid);
}
}
return sum ;
}
}
分享给大家一句话:
“今天不想跑,所以才去跑”---村上春树