ML 线性回归-过拟合-正则化

        在机器学习中,线性回归模型可能会遇到过拟合的问题,特别是当特征数量很多或者特者之间存在相关性时。正则化是一种减少过拟合的技术,通过在损失函数中添加一个额外的项来惩罚模型的复杂度。常用的正则化技术有两种:L1正则化(Lasso回归)和L2正则化(Ridge回归)

L1正则化

        L1正则化:通过向损失函数添加权重的绝对值之和来工作。这导致模型倾向于产生稀疏权重矩阵,即很多权重会变为零。L1的损失函数如下:

        优点:

                1. 稀疏性:L1正则化倾向于产生稀疏矩阵,即很多权重会变为0。这使得模型变得简单,易于解释

                2. 特征选择:由于L1正则化能够将不重要的特征权重压缩到0,它在特征选择方面非常有效。这有助于识别对模型预测最有影响力的特征。(dj思考:感觉L1正则化适用特征之间存在相关性的情况,从损失函数来看,如果特征之间存在相关性,保留一个特征既不会影响影响模型的精度又降低了损失函数)

                3. 抗多重共线性:当数据集中的特征高度相关时,L1正则化可以帮助减少模型的方差,提高模型的泛化能力(在遇到没有训练过的数据时模型的表现能力)

        适用情况:

                1. 特征数量多:当特征数量远大于样本数量时,L1正则化可以有效地减少过拟合

                2. 特征选择:如果你希望模型自动进行特征选择,L1正则化是一个不错的选择

                3. 数据集具有多重共线性(特征之间高度相关):在特征之间存在高度相关性的情况下,L1正则化可以帮助模型更好地泛化

                4. 需要模型解释性

                5. 小样本问题:在样本数量比较少的情况下,L1正则化可以帮助避免过拟合

        局限性:

                1. 特征数量非常大时,求解L1正则化问题可能会比较慢

                2. 并且L1正则化问题可能没有唯一解

L2正则化

        L2 正则化通过向损失函数添加权重的平方和来工作。这导致模型倾向于使权重接近零但不完全为零,从而减少了模型复杂度,但不会将权重压缩到零。L2 正则化的损失函数如下:

        优点:

                1. 稳定性:L2正则化倾向于使所有权重都接近0,但不会把他们压缩到0,从而保持了模型的稳定性

                2. 避免过拟合:通过惩罚权重的平方和,L2正则化减少了模型复杂度,有助于避免过拟合

                3. 数值稳定性:L2正则化通常是凸优化问题,这意味着它有一个全局最优解,这为求解提供了稳定性

                4. 保持模型复杂度:L2正则化不会将权重减少到0,因此它允许模型保持一定的复杂度,这在某些情况下可以提高模型的预测能力。

        适用情况:

                1. 数据集特征数量适中:当特征数量不是非常大时,或者特征与目标变量之间的关系较为复杂时,L2正则化可以有效地工作

                2. 需要模型稳定性:

                3. 避免计算复杂性:当使用梯度下降等优化算法时,L2正则化问题通常更容易求解,因为它的梯度是连续可导的

                4. 数据集较大:在处理大型数据时,L2正则化可以提供更好的数值稳定性和收敛性

                5. 模型解释性需求不高:与L1正则化相比,L2正则化不会产生稀疏解,因此如果模型的解释性不是主要关注点,L2正则化可能更适合

总结:

        L1正则化适用小样本、解释性需求高、特征选择的情况,而L2适用大样本,解释性需求不高,且需要保持模型复杂度的情况。

                       

  • 5
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值