
机器学习
文章平均质量分 74
qq_59908854
这个作者很懒,什么都没留下…
展开
-
机器学习 特征工程
特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程将任意数据(文本或图像)转换为可用于机器学习的数字特征(特征提取是为了计算机更好的去理解数据)原创 2024-08-27 14:20:53 · 1307 阅读 · 0 评论 -
ML 回归-非线性回归
1. scaler会记录测试数据集的mean和std所以当有新的测试数据时,可以直接scaler.transfer(new_data)就可以完成数据转换2. 因为是多项式回归拟合,poly_features会扩大特征的维数,因此对测试数据进行转换特征,因此后面也就是变成了只与参数有关的线性回归,因此后面也就直接建立的线性回归模型。3. 一旦使用线性回归模型训练了数据,可以通过coef_属性来获得特征的系数(即参数值),截距值可以通过intercept_属性获得。原创 2024-08-26 17:31:26 · 327 阅读 · 0 评论 -
机器学习 调用MNIST数据实现二分类
关于SGDClassifier实例,还有许多其他的参数可以设置,包括损失函数,正则化项等等。原创 2024-08-27 10:09:26 · 143 阅读 · 0 评论 -
ML 线性回归-过拟合-正则化
L1正则化适用小样本、解释性需求高、特征选择的情况,而L2适用大样本,解释性需求不高,且需要保持模型复杂度的情况。原创 2024-08-26 12:29:01 · 1318 阅读 · 0 评论