大吉大利,准备吃鸡!
你是否玩儿了好几个月的吃鸡,依旧是落地成盒?
是否常常不得知自己如何被打、莫名其妙的挂了?
还没有吃过鸡/(ㄒoㄒ)/~~总是不明不白的就被别的玩家杀了
!!!∑(゚Д゚ノ)ノ能进前二十就已经很不错了
今天小编带来了福利奥O(≧▽≦)O
大吉大利,今晚吃鸡~
打人时要坚持一个原则,先打对你来说最危险的目标。
(不一定是近点的目标,大部分情况是先近后远)
那么我们就用 Python 和 R 做数据分析来回答以下的灵魂发问?
首先来看下数据:
一、跳哪儿危险?
对于我这样一直喜欢苟着的良心玩家,在经历了无数次落地成河的惨痛经历后,我是坚决不会选择跳P城这样楼房密集的城市,穷归穷但保命要紧。所以我们决定统计一下到底哪些地方更容易落地成河?我们筛选出在前100秒死亡的玩家地点进行可视化分析。激情沙漠地图的电站、皮卡多、别墅区、依波城最为危险,火车站、火电厂相对安全。绝地海岛中P城、军事基地、学校、医院、核电站、防空洞都是绝对的危险地带。物质丰富的G港居然相对安全。
1 import numpy as np
2 import matplotlib.pyplot as plt
3 import pandas as pd
4 import seaborn as sns
5 from scipy.misc.pilutil import imread
6 import matplotlib.cm as cm
7
8 #导入部分数据 9deaths1 = pd.read_csv("deaths/kill_match_stats_final_0.csv")
10 deaths2 = pd.read_csv("deaths/kill_match_stats_final_1.csv")
11
12 deaths = pd.concat([deaths1, deaths2])
13
14 #打印前5列,理解变量
15 print (deaths.head(),'\n',len(deaths))
16
17 #两种地图
18 miramar = deaths[deaths["map"] == "MIRAMAR"]
19 erangel = deaths[deaths["map"] == "ERANGEL"]
20
21 #开局前100秒死亡热力图22 position_data = ["killer_position_x","killer_position_y","victim_position_x","victim_position_y"]
23 for position in position_data:
24 miramar[position] = miramar[position].apply(lambda x: x*1000/800000)
25 miramar = miramar[miramar[position] != 0]
26
27 erangel[position] = erangel[position].apply(lambda x: x*4096/800000)
28 erangel = erangel[erangel[position] != 0]
29
30 n = 50000
31 mira_sample = miramar[miramar["time"] < 100].sample(n)
32 eran_sample = erangel[erangel["time"] < 100].sample(n)
33
34 # miramar热力图35bg = imread("miramar.jpg")
36 fig, ax = plt.subplots(