Mitsui745
码龄3年
关注
提问 私信
  • 博客:16,320
    16,320
    总访问量
  • 12
    原创
  • 415,801
    排名
  • 7
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2021-07-17
博客简介:

qq_60272314的博客

查看详细资料
个人成就
  • 获得7次点赞
  • 内容获得2次评论
  • 获得75次收藏
创作历程
  • 1篇
    2022年
  • 11篇
    2021年
成就勋章
TA的专栏
  • 自学用
    10篇
  • 论文阅读
    4篇
  • 整理
    5篇
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

论文写作4/7

目录摘要和题目引言Method部分结果与讨论图、表部分结论一篇文章的结构一般来说可以分为,1.题目和摘要,这属于是文章浓缩的精华。2.引言/文献综述,本质上就是tell a story。3.研究方法,包括数学层面以及一些实验。4.结果/讨论,这部分是透过现象看本质。5.结论,介绍文章的贡献。6.参考文献,属于致敬环节。按照工作的先后顺序应该是:1.研究方法2.结果与讨论3.结论4.引言/文献综述5.题目与摘要,同时,参考文献(文献阅读)应该...
原创
发布博客 2022.04.08 ·
422 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

论文Is Space-Time Attention All You Need for Video Understanding?阅读笔记

写在前面:要从Transformer在NLP领域的一举成名说起,这种简单只使用注意力机制(attention)的结构在机器翻译等等方向都取得了不错的效果。顾名思义,这篇文章的方法基于Transformer提出了一种用于视频理解的框架,是Google提出的用于图像的Transformer-ViT(VisionTransformer)的扩展,将该方法命为TimeSformer(Time-Space Transformer)。对于基本的Transformer不再赘述,对...
原创
发布博客 2021.12.09 ·
1453 阅读 ·
0 点赞 ·
0 评论 ·
9 收藏

图神经网络常用算法之deepwalk

通过知乎【论文笔记】DeepWalk 以及 一种网络嵌入的方法叫DeepWalk,它的输入是一张图或者网络,输出为网络中顶点的向量表示。DeepWalk通过截断随机游走(truncated random walk)学习出一个网络的社会表示,在网络标注顶点很少的情况也能得到比较好的效果。并且该方法还具有可扩展的优点,能够适应网络的变化。随机游走(random walk),就是在网络上不断重复地随机选择游走路径,最终形成一条贯穿网络的路径。从某个特定的端点开始,游走的每一步都从与当前节...
原创
发布博客 2021.12.02 ·
915 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

GNN综述:论文A Comprehensive Survey on Graph Neural Networks

目录一、什么是图神经网络二、图神经网络的种类1、图卷积网络(Graph Convolution Networks,GCN)2、图注意力网络(Graph Attention Networks)3、Graph Autoencoders4、Graph Generative Networks5、Graph Spatial-Temporal Networks三、图神经网络的应用一、什么是图神经网络 传统的深度学习方法被应用在提取欧氏空间数据的特征方面取得了巨大的成功...
原创
发布博客 2021.11.26 ·
2032 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

循环GCN相关

粗读几篇循环GCN有关论文,简单进行总结1.Understanding Human Gaze Communication by Spatio-Temporal Graph Reasoning提出了一个时空图神经网络来明确表示社交场景中不同的注视互动,并通过信息传递来推断原子水平的注视通信。我们进一步提出了一种具有编码解码器结构的事件网络来预测事件级的注视通信。对输入视频执行空间推理,通过消息传播更新节点标识。在c中,粗的箭头表示权重较高,具有视线的交互。通过输入的社交视频(a).
原创
发布博客 2021.11.05 ·
246 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

[论文阅读]Spatial Temporal Graph Convolutional Networks for Skeleton-Based ActionRecognition

目录一.概括二.传统GCN与本文ST-GCN之间的区别 三.实现ST-GCN的细节一.概括传统的a骨骼建模方法通常依靠手工制作部分或遍历规则,从而导致表达能力有限和泛化困难.过往方法能力的限制在于不能精确的提取关节之间的空间关系,而这些空间关系对于理解人类活动是重要的。本文旨在开发一种有原则的、有效的动态骨骼建模方法,并将其用于动作识别。提出了一种新的 ST-GCN,即时空图卷积网络模型,用于解决基于人体骨架关键点的人类动作识别问题。通过自动从数据中自动学习空间和时间...
原创
发布博客 2021.10.29 ·
1750 阅读 ·
0 点赞 ·
0 评论 ·
8 收藏

GAN 、LSTM与GRU

在阅读论文Multi-Level Sequence GAN for Group Activity Recognition时候,发现其使用的是LSTM+GAN,特此,对GAN与LSTM进行了解。生成式对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。模型通过框架中(至少)两个模块:生成模型(Generative Model)和判别模型(Discriminative Model)的互相博弈学习产生相当好的
原创
发布博客 2021.10.21 ·
2456 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

wg-read

1群体行为识别1.1交互/图for 行为识别1.1.2个体+分层【A---- 分层,人人交互,LSTM】Xiangbo Shu 2018 Xiangbo Shu, Jinhui Tang, Guo-Jun Qi, Wei Liu, Jian Yang:Hierarchical Long Short-Term Concurrent Memory for Human Interaction Recognition. CoRR abs/1811.00270 (2018)在这项工作..
原创
发布博客 2021.10.15 ·
160 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

GCN演变及改进整理

目录一.演变1.Spectral CNN2.Chebyshev谱CNN(ChebNet)3.CayleyNet4.一阶ChebNet(1stChebNet)-GCN二.GCN的改进1.邻接矩阵的探索Adaptive Graph Convolution Network (AGCN)Dual Graph Convolutional Network(DGCN)2. 空间域的GCNs(ConvGNNs)Neural Network for Graphs (NN4G..
原创
发布博客 2021.09.25 ·
5182 阅读 ·
7 点赞 ·
1 评论 ·
46 收藏

整理经典网络并计算其flops等

利用tensorboard显示模型示意图使用到的函数add_graph中的参数add_graph(model, input_to_model=None, verbose=False, **kwargs)参数 model (torch.nn.Module): 待可视化的网络模型 input_to_model (torch.Tensor or list of torch.Tensor, optional): 待输入神经网络的变量或一组变量verbose表示详细信息,verbos...
原创
发布博客 2021.09.06 ·
571 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

*args与**kwargs

args 是 arguments 的缩写,表示位置参数;kwargs 是 keyword arguments 的缩写,表示关键字参数。这其实就是 Python 中可变参数的两种形式,并且 *args 必须放在 **kwargs 的前面,因为位置参数在关键字参数的前面。*args的用法*args就是就是传递一个可变参数列表给函数实参,这个参数列表的数目未知,甚至长度可以为0。下面这段代码演示了如何使用argsdef test_args(first, *args): print('Re
原创
发布博客 2021.09.06 ·
119 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

summary函数与stat函数(计算flops等)

这两个函数可以用来计算flops、madd、内存、参数、形状等例如对于一个网络net1使用summary与stat函数对其性能进行检查其中(1,28,28)是网络输入形状(28*28的图片)from torchstat import statfrom torchsummary import summaryimport torchdef main(): model = Net_2() stat(model, (1, 28, 28)) if __name
原创
发布博客 2021.09.04 ·
986 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏