[论文阅读]Spatial Temporal Graph Convolutional Networks for Skeleton-Based ActionRecognition

本文介绍了ST-GCN,一种用于基于人体骨架关键点的动作识别的时空图卷积网络模型。与传统GCN相比,ST-GCN能更好地捕捉关节之间的空间关系和时间序列信息,解决了平均操作无法建模相对位置变化的问题。通过定义不同的空间和时间划分策略,ST-GCN在动作识别任务上表现优越。
摘要由CSDN通过智能技术生成

目录

一.概括

二.传统GCN与本文ST-GCN之间的区别

         三.实现ST-GCN的细节


一.概括

传统的a骨骼建模方法通常依靠手工制作部分或遍历规则,从而导致表达能力有限和泛化困难.过往方法能力的限制在于不能精确的提取关节之间的空间关系,而这些空间关系对于理解人类活动是重要的。

本文旨在开发一种有原则的、有效的动态骨骼建模方法,并将其用于动作识别。提出了一种新的 ST-GCN,即时空图卷积网络模型,用于解决基于人体骨架关键点的人类动作识别问题。通过自动从数据中自动学习空间和时间模式,超越了以往方法的局限性。

1.空间上:将骨架之间的关键点作为空间关系的输入(存在着不同点之间邻域大小不定的困难,考虑到用基于Graph的CNN网络模型);

2.时间上:使用视频数据,利用图片之间的时序关系。

如何构成时空图:

1. 在每一帧内部,按照人体的自然骨架连接关系构造空间图;

2. 在相邻两帧的相同关键点连接起来,构成时序边;

3. 所有输入帧中关键点构成节点集(node set),步骤 1、2 中的所有边构成边集(edge set),即构成所需的时空图。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值