目录
一.概括
传统的a骨骼建模方法通常依靠手工制作部分或遍历规则,从而导致表达能力有限和泛化困难.过往方法能力的限制在于不能精确的提取关节之间的空间关系,而这些空间关系对于理解人类活动是重要的。
本文旨在开发一种有原则的、有效的动态骨骼建模方法,并将其用于动作识别。提出了一种新的 ST-GCN,即时空图卷积网络模型,用于解决基于人体骨架关键点的人类动作识别问题。通过自动从数据中自动学习空间和时间模式,超越了以往方法的局限性。
1.空间上:将骨架之间的关键点作为空间关系的输入(存在着不同点之间邻域大小不定的困难,考虑到用基于Graph的CNN网络模型);
2.时间上:使用视频数据,利用图片之间的时序关系。
如何构成时空图:
1. 在每一帧内部,按照人体的自然骨架连接关系构造空间图;
2. 在相邻两帧的相同关键点连接起来,构成时序边;
3. 所有输入帧中关键点构成节点集(node set),步骤 1、2 中的所有边构成边集(edge set),即构成所需的时空图。