生成器其实是一种特殊的迭代器,不过这种迭代器更加优雅。它不需要再像上面的类一样写__iter__()和__next__()方法了,只需要一个yiled关键字。 生成器一定是迭代器(反之不成立),因此任何生成器也是以一种懒加载的模式生成值。用生成器来实现斐波那契数列的例子是:
def fib():
a = 0
b = 1
while True:
c = a + b
a = b
b = c
yield a
g = fib()
print(next(g))
print(next(g))
print(next(g))
print(next(g))
print(next(g))
生成器特殊的地方在于函数体中没有return关键字,函数的返回值是一个生成器对象。当执行f=fib()返回的是一个生成器对象,此时函数体中的代码并不会执行,只有显示或隐示地调用next的时候才会真正执行里面的代码。生成器还有一个send方法,可以往生成器里的变量传值:
send方法和next方法唯一的区别是在执行send方法会首先把上一次挂起的yield语句的返回值通过参数设定,从而实现与生成器方法的交互。但是需要注意,在一个生成器对象没有执行next方法之前,由于没有yield语句被挂起,所以执行send方法会报错。因为当send方法的参数为None时,它与next方法完全等价。但是注意,虽然这样的代码可以接受,但是不规范。所以,在调用send方法之前,还是先调用一次next方法为好。
def foo():
print("first")
count= yield
print(count)
times =yield
print(times)
yield
f = foo()
# f.send(None)
next(f)
f.send(2)
f.send(3)
生成器表达式:
生成器表达式是列表推倒式的生成器版本,看起来像列表推导式,但是它返回的是一个生成器对象而不是列表对象。
a = (x for x in range(10))
print(a)
判断是否可以迭代:
from collections.abc import Iterable
isinstance([], Iterable)
isinstance({}, Iterable)
isinstance('abc', Iterable)
isinstance((x for x in range(10)), Iterable)
isinstance(100, Iterable)