Python高级语法之生成器!

21 篇文章 0 订阅
20 篇文章 0 订阅
本文深入探讨了Python中的生成器,解释了它们如何通过`yield`关键字实现迭代,并以斐波那契数列为实例进行说明。此外,还介绍了生成器的懒加载模式以及send方法,展示了如何通过send向生成器内部传递值。最后,提到了生成器表达式作为轻量级的生成器形式,并讨论了如何判断一个对象是否可迭代。
摘要由CSDN通过智能技术生成

       生成器其实是一种特殊的迭代器,不过这种迭代器更加优雅。它不需要再像上面的类一样写__iter__()和__next__()方法了,只需要一个yiled关键字。 生成器一定是迭代器(反之不成立),因此任何生成器也是以一种懒加载的模式生成值。用生成器来实现斐波那契数列的例子是:

def fib():
    a = 0
    b = 1
    while True:
        c = a + b
        a = b
        b = c
        yield a

g = fib()
print(next(g))
print(next(g))
print(next(g))
print(next(g))
print(next(g))

     生成器特殊的地方在于函数体中没有return关键字,函数的返回值是一个生成器对象。当执行f=fib()返回的是一个生成器对象,此时函数体中的代码并不会执行,只有显示或隐示地调用next的时候才会真正执行里面的代码。生成器还有一个send方法,可以往生成器里的变量传值:

    send方法和next方法唯一的区别是在执行send方法会首先把上一次挂起的yield语句的返回值通过参数设定,从而实现与生成器方法的交互。但是需要注意,在一个生成器对象没有执行next方法之前,由于没有yield语句被挂起,所以执行send方法会报错。因为当send方法的参数为None时,它与next方法完全等价。但是注意,虽然这样的代码可以接受,但是不规范。所以,在调用send方法之前,还是先调用一次next方法为好。

def foo():
    print("first")
    count= yield
    print(count)
    times =yield
    print(times)
    yield
f = foo()
# f.send(None)
next(f)
f.send(2)
f.send(3)

生成器表达式:

生成器表达式是列表推倒式的生成器版本,看起来像列表推导式,但是它返回的是一个生成器对象而不是列表对象。

a = (x for x in range(10))
print(a)

 判断是否可以迭代:

from collections.abc import Iterable
isinstance([], Iterable)
isinstance({}, Iterable)
isinstance('abc', Iterable)
isinstance((x for x in range(10)), Iterable)
isinstance(100, Iterable)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值