因为搞不清楚这些名词的关系,所以写一篇文章将他们之间的关系弄明白。
一、定义
- 机器学习有下面几种定义:
(1)机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能。
(2)机器学习是对能通过经验自动改进的计算机算法的研究。
(3)机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。
所以,机器学习和计算机视觉包含在人工智能中。
那么深度学习又是什么?
- 深度学习(Deep Learning)特指基于深层神经网络模型和方法的机器学习。
它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。
深度学习最重要的技术特点是具有自动提取特征的能力,所提取的特征也称为深度特征或深度特征表示。深度学习的本质是特征表征学习。深层神经网络是深度学习能够自动提取特征的模型基础,深层神经网络本质上是一系列非线性变换的嵌套。
所以,深度学习是机器学习的一个重要分支,深度学习是人工智能研究中一条技术途径。
所以,计算机视觉需要做一些图像处理。
- 图像处理(image processing),用计算机对图像进行分析,以达到所需结果的技术。图像处理一般指数字图像处理。
图像处理技术一般包括图像压缩,增强和复原,匹配、描述和识别 3个部分。
二、重点谈谈深度学习
应用
