练习一
# UNQ_C1
# GRADED FUNCTION: find_closest_centroids
def find_closest_centroids(X, centroids):
"""
Computes the centroid memberships for every example
Args:
X (ndarray): (m, n) Input values
centroids (ndarray): k centroids
Returns:
idx (array_like): (m,) closest centroids
"""
# Set K
K = centroids.shape[0]
# You need to return the following variables correctly
idx = np.zeros(X.shape[0], dtype=int)
### START CODE HERE ###
for i in range(X.shape[0]):
distance = []
for j in range(centroids.shape[0]):
norm_ij = np.linalg.norm(X[i] - centroids[j])
distance.append(norm_ij)
idx[i] = np.argmin(distance)
### END CODE HERE ###
return idx
练习二:
# UNQ_C2
# GRADED FUNCTION: compute_centpods
def compute_centroids(X, idx, K):
"""
Returns the new centroids by computing the means of the
data points assigned to each centroid.
Args:
X (ndarray): (m, n) Data points
idx (ndarray): (m,) Array containing index of closest centroid for each
example in X. Concretely, idx[i] contains the index of
the centroid closest to example i
K (int): number of centroids
Returns:
centroids (ndarray): (K, n) New centroids computed
"""
# Useful variables
m, n = X.shape
# You need to return the following variables correctly
centroids = np.zeros((K, n))
### START CODE HERE ###
for k in range(K):
points = X[idx == k]
if(len(points) > 0):
centroids[k] = np.mean(points, axis = 0)
else:
centroids[k] = X[np.random.choice(m, 1)].flatten()
### END CODE HERE ##
return centroids
K-means应用:图片压缩,通过改变颜色的数量,颜色的数量就是K,以下是K= 16时,对图片进行压缩:
当K = 32时,
K越大,图片越清晰。
想要资料可以私信。