【高中数学】数列 · 通项求法

本文详细介绍了高中数学中数列通项公式的求解方法,包括累加法、累乘法和构造法。通过具体例题解析了每种方法的步骤和技巧,如一次函数、二次函数、指数函数和分式函数的累加求和,以及如何将复杂递推关系转化为简单的等差或等比数列。此外,还探讨了二次型和高次型递推关系的处理策略,帮助理解数列通项公式的求解过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【高中数学】数列 · 通项求法

〇、At the begining

这个东西有点乱(令人抓狂),而且好像还有一些题型没有涉及,后续可能补充

一、累加法

就是形如an+1-an=f(n)的形式

 解决方法 : 化为an-an-1=f(n-1)形式,然后进行累加

Example:

已知数列{an}中,a1=0,an+1+2n-1,求an

Answer:
在这里插入图片描述

Add:
累加法的几种形式及常见解决方法

  • f(n)是一次函数,累加后转化为等差数列,求和即可

  • f(n)是二次函数,累加后分组求和

  • f(n)是指数函数,累加后转化为等比数列,求和即可

  • f(n)是分式函数,累加后运用列项相加法求和即可

二、累乘法

就是形如an+1=an的形式

 解决方法 : 化为an=f(n-1)an-1形式,然后进行累加

Example:

已知{an}中,a1=1,an+1=2nan,求an

累乘法

三、构造法

其实就是形如an+1=p · an + f(n)的形式

 基本上可以总结为三种形式,如下:

  • an+1 = p · an + q (p ≠ \not= = 1 , q ≠ \not= = 0)

    解决方法 : 将式子转化为an+1 + λ \lambda λ = p · (an + λ \lambda λ)的形式,其中 λ \lambda λ 可用待定系数法求出。非常简单

    Example:

    已知{an}中an+1 = 3an+2,a1 = 3,求an

    Answer:

    由题干,易知原式可化为:an+1 +1 = 3(an + 1)

    又因为a1 = 3 ≠ \not= = 0

    so,数列{an + 1}是首项为3,公比为3的等比数列

    可知an +1 = 3n,即an = 3n +1

  • an+1 = p · an + qn (p ≠ \not= = 1 , q ≠ \not= = 0 or 1)

    解决方法:

      1.待定系数法,同上;

      2.等式两边同时除以 pn+1 或 qn+1 ,做法差不多,目的是为了构造出一个等差数列方便求解

    这里重点讲一下第二种做法

    Give you an Example:

    已知{an}满足an+1 = 2an + 4 · 3n-1,求an

    • 解法一  (同除以qn+1) :

       两边同时除以3n+1 , 得:

    a n + 1 3 n + 1 = 2 3 ⋅ a n 3 n + 4 9 \frac{a_{n+1}}{3^{n+1}} = \frac{2}{3} · \frac{a_n}{3^n} + \frac{4}{9} 3n+1an+1=323nan+94
       然后就按照上面待定系数法

    • 解法二  (同除以pn+1):

       两边同时除以2n+1 , 得:

    a n + 1 2 n + 1 = a n 2 n + 4 3 ⋅ ( 3 2 ) n \frac{a_{n+1}}{2^{n+1}} = \frac{a_n}{2^n} + \frac{4}{3} · (\frac{3}{2})^n 2n+1an+1=2nan+34(23)n
       接下来同上

  • an+2 = p · an+1 + q · an

    解决方法:将an作为f(n)来解决

    Example:

    已知数列{an}满足an+2 = 3 an+1 - 2 an , a1 = 1 , a2 = 3 , 求an

    Answer:

    设an+2 + α \alpha α · an+1 = β \beta β(an+1 + α \alpha α · an)

    则可知an+2 = ( α \alpha α+ β \beta β)an+1 - α \alpha α · β \beta β an

    和已知的式子an+2 = 3 an+1 - 2 an 比较,可知:
    { α = 1 β = 2 o r { α = 2 β = 1 \left\{ \begin{matrix} \alpha=1 \\ \beta=2 \end{matrix} \right. or \left\{ \begin{matrix} \alpha=2 \\ \beta=1 \end{matrix} \right. {α=1β=2or{α=2β=1
    α \alpha α = 2 , β \beta β = 1. (两种取法一样)

    可知 , an+2 - 2an+1 = an+1 -2an

    又因为a2 - 2a1 = 3-2 =1

    所以an+1 - 2an = 1

    即an+1 +1 = 2(an +1)

    可知 an = 2n-1

END

如有谬误请多指教!

What’s more :图片来源于网络,如有侵权请告知删除!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值