给定一个 nn 个点 mm 条边的有向图,图中可能存在重边和自环,所有边权均为正值。
请你求出 11 号点到 nn 号点的最短距离,如果无法从 11 号点走到 nn 号点,则输出 −1−1。
输入格式
第一行包含整数 nn 和 mm。
接下来 mm 行每行包含三个整数 x,y,zx,y,z,表示存在一条从点 xx 到点 yy 的有向边,边长为 zz。
输出格式
输出一个整数,表示 11 号点到 nn 号点的最短距离。
如果路径不存在,则输出 −1−1。
数据范围
1≤n≤5001≤n≤500,
1≤m≤1051≤m≤105,
图中涉及边长均不超过10000。
输入样例:
3 3
1 2 2
2 3 1
1 3 4
输出样例:
3
#include<bits/stdc++.h>
using namespace std;
const int N = 510,M=100010,INF = 0x3f3f3f3f;
int n,m;
int g[N][N],dist[N];
bool st[N];
int dijkstra()
{
memset(dist,0x3f,sizeof(dist));
dist[1]=0;
for(int i=0;i<n;i++)
{
int t=-1;
for(int j=1;j<=n;j++)
{
if(!st[j]&& (t==-1||dist[t]>dist[j]))
t=j;
}
st[t]=true;
for(int j=1;j<=n;j++)
{
dist[j]=min(dist[j],dist[t]+g[t][j]);
}
}
return dist[n];
}
int main(){
scanf("%d%d",&n,&m);
memset(g,0x3f,sizeof(g));
while(m--)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
g[a][b]=min(g[a][b],c);
}
int res=dijkstra();
if(res==INF) puts("-1");
else printf("%d\n",res);
return 0;
}