Dijkstra求最短路

给定一个 nn 个点 mm 条边的有向图,图中可能存在重边和自环,所有边权均为正值。

请你求出 11 号点到 nn 号点的最短距离,如果无法从 11 号点走到 nn 号点,则输出 −1−1。

输入格式

第一行包含整数 nn 和 mm。

接下来 mm 行每行包含三个整数 x,y,zx,y,z,表示存在一条从点 xx 到点 yy 的有向边,边长为 zz。

输出格式

输出一个整数,表示 11 号点到 nn 号点的最短距离。

如果路径不存在,则输出 −1−1。

数据范围

1≤n≤5001≤n≤500,
1≤m≤1051≤m≤105,
图中涉及边长均不超过10000。

输入样例:
3 3
1 2 2
2 3 1
1 3 4
输出样例:
3
#include<bits/stdc++.h>
using namespace std;
const int N = 510,M=100010,INF = 0x3f3f3f3f;

int n,m;
int g[N][N],dist[N];
bool st[N];

int dijkstra()
{
    memset(dist,0x3f,sizeof(dist));
    dist[1]=0;
    for(int i=0;i<n;i++)
    {
        int t=-1;
        for(int j=1;j<=n;j++)
        {
            if(!st[j]&& (t==-1||dist[t]>dist[j]))
             t=j;
             
        }
        st[t]=true;
        for(int j=1;j<=n;j++)
        {
            dist[j]=min(dist[j],dist[t]+g[t][j]);
        }
        
    }
    return dist[n];
}
int main(){
    scanf("%d%d",&n,&m);
    memset(g,0x3f,sizeof(g));
    while(m--)
    {
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        g[a][b]=min(g[a][b],c);
    }
    int res=dijkstra();
    if(res==INF) puts("-1");
    else printf("%d\n",res);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序garbage

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值