图论之Floyd,多源图最短路如何暴力美学?

一、前言

在之前的图论算法中有说过基本都是从一个原点出发,然后定义其他点到原点的一个距离最小值。那假设这个原点都是不固定的,而题目刚好要求去求任意两个点之间的最小距离的话,那么这个时候暴力美学就非常凸显出其独有的重要性了。那么本章总结的Floyd算法,就是能够解决这样的问题。

二、题目汇总

①Floyd算法模板(ACwing.854)

Floyd求最短路

相关分析

时间复杂度: O ( n 3 ) O(n^3) O(n3)

适用场景: 当点的数量很少,而边的数量较多的稠密图,且题目要求求的是任意两点之间的最短距离的时候,就可以利用此算法进行求解。

思路: 由于是稠密图,可以用邻接矩阵来存图,对于每个邻接矩阵,都是会有 g [ a ] [ b ] g[a][b] g[a][b]表示a到b的距离,那么一旦a到b之间这条路径有其他点k的话,那么就可以考虑用k这个点去尝试更新一下 g [ a ] [ b ] g[a][b] g[a][b]之间的距离,也就是:
g [ a ] [ b ] = m i n ( g [ a ] [ b ] , g [ a ] [ k ] + g [ k ] [ b ] ) g[a][b] = min(g[a][b], g[a][k] + g[k][b]) g[a][b]=min(g[a][b],g[a][k]+g[k][b])
这样的话,我们利用三层循环,内两层循环去循环a,b两个点,外一层循环,循环k这个点这样就可以不重不漏的列举每个路径的可能性,对于无边的边,初始化为正无穷,就可以实现更新了。

完整AC代码
#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int INF = 1e9;
const int N = 205;
int n, m, k;
int grid[N][N];

void floyd() {
    for(int k = 1; k <= n; k ++ ) {
        for(int i = 1; i <= n; i ++ ) {
            for(int j = 1; j <= n; j ++ ) {
                grid[i][j] = min(grid[i][j], grid[i][k] + grid[k][j]);
            }
        }
    }
}

int main() {
    cin >> n >> m >> k;
    //初始化
    for(int i = 1; i <= n; i ++ ) {
        for(int j = 1; j <= n; j ++) {
            if(i == j) grid[i][j] = 0;
            else grid[i][j] = INF;
        }
    }
    
    for(int i = 1; i <= m; i ++ ) {
        int a, b, c;
        cin >> a >> b >> c;
        
        grid[a][b] = min(grid[a][b], c);
    }
    
    floyd();
    
    while(k -- ) {
        int x, y;
        cin >> x >> y;
        
        if(grid[x][y] > INF / 2) cout << "impossible" << endl;
        else cout << grid[x][y] << endl;
    }
    
    return 0;
}
相关问题

循环的顺序能不能变?

在上面的代码,我们可以看到,循环的顺序是先循环k,再循坏i,j。也就如下

void floyd() {
    for(int k = 1; k <= n; k ++ ) {
        for(int i = 1; i <= n; i ++ ) {
            for(int j = 1; j <= n; j ++ ) {
                grid[i][j] = min(grid[i][j], grid[i][k] + grid[k][j]);
            }
        }
    }
}

如果把k这一层放到最内层,如下的话可以吗?

void floyd() {
    for(int i = 1; i <= n; i ++ ) {
        for(int j = 1; j <= n; j ++ ) {
            for(int k = 1; k <= n; k ++ ) {
                grid[i][j] = min(grid[i][j], grid[i][k] + grid[k][j]);
            }
        }
    }
}

答案是不行的!

首先举个例子,假设有一组样例是这样的

10 4 1

2 8 1

8 9 8

9 1 10

1 10 0

2 10

上面的样例,显然从2到10的距离最短是19,但是如果按照第二种方式,最后得到的结果会是impossible的,为什么呢?从循环顺序来看,当我们要求$ g[2][10] 的时候就需要求 的时候就需要求 的时候就需要求g[2][1] , 而在求 ,而在求 ,而在求g[2][1] 的时候,我们发现 的时候,我们发现 的时候,我们发现g[2][1]是通过g[2][9]和g[9][1]得到的 ,而如果循环把 k 放到内层,那么 ,而如果循环把k放到内层,那么 ,而如果循环把k放到内层,那么g[2][9] 会在 i = 2 , j = 9 的时候才能推出来,这样就导致 会在i=2,j=9的时候才能推出来,这样就导致 会在i=2j=9的时候才能推出来,这样就导致g[2][1]$不能顺利得到正确结果,也就是最后得不到一条2到10的最短距离。

其次我们应该用动态规划的思想去理解Floyd的算法。我们可以让这个算法的动态规划数组看成 f ( k , i , j ) f(k, i, j) f(k,i,j)代表以前k个点为媒介的时候,从i到j这个点的最短距离。

利用dp分析的方法有下面这个图

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4rDX2o1b-1659155399898)(C:/Users/0604520/AppData/Roaming/Typora/typora-user-images/image-20220730101206077.png)]

动态规划转移方程如下:
f [ k ] [ i ] [ j ] = m i n ( f [ k − 1 ] [ i ] [ j ] , f [ k − 1 ] [ i ] [ k ] + f [ k − 1 ] [ k ] [ j ] ) f[k][i][j] = min(f[k - 1][i][j],f[k - 1][i][k] + f[k-1][k][j]) f[k][i][j]=min(f[k1][i][j],f[k1][i][k]+f[k1][k][j])
也就是说,我们当前第k层的状态应该根据上一层已经推出的k-1层来进行运算,所以k这一层循环应当放在最外面。

而由于上一层推出来的一个数据本身就可以用来推导下一层,就和背包dp问题的感觉一样,就可以优化一层,利用滚动数组的感觉,变成二维的dp解法,也就是我们的解法一。

②未完待续

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sheep.ice

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值