图论之Prim,最小生成树该怎么解?

本文详细介绍了Prim算法在图论中的应用,通过与Dijkstra算法比较,阐述了如何构建最小生成树,以及其在点数少边数多场景中的优势。提供了C++代码示例,演示了如何利用dist数组更新过程来求得最小生成树的总权值。
摘要由CSDN通过智能技术生成

一、前言

此篇主要针对图论中的求最小生成树的一种算法Prim算法,这个算法其实整体的结构和dijkstra算法是相似的,所以整体的思路也和dijkstra算法有异曲同工之妙。首先,讲一下自己对最小生成树这个概念的理解。

生成树: 包含图中所有结点,且整个结点形成的一张图中不含有任何环,一旦再多连接两个结点形成一条边,一定会生成一个环的一个结构图。

最小生成树: 在一个图中找到的所有生成树中,所有边加起来的权值最小的那一棵生成树是一颗最小生成树。

二、题目汇总

①Prim算法模板(ACwing.858)

Prim求最小生成树

时间复杂度: O ( n 2 ) O(n^2) O(n2)

适用场景: 点数少,边数多的最小生成树求解。

思路: 和dijkstra算法结构差不多,但是此时定义的dist数组指的是,此时计算的某个点,到我们此时求到的生成树整个集合中的一个最小值距离。也就是说我们在推导dist数组的时候,同样每次选取一个距离集合最短的那一条边进行一个延申,不断延申的时候求出某个点到整个已经求出的部分最小生成树的一个距离最小值。

更新过程:

紫色 当前利用的更新点

蓝色当前更新完后,某个点距离整个集合的最小距离

红色两个结点边的长度

上图最终的最小生成树就为3!

完整AC代码
#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 505, INF = 0x3f3f3f3f;
int g[N][N], dist[N];
bool st[N];
int n, m;

int prim() {
    int res = 0;
    dist[1] = 0;
    
    for(int i = 1; i <= n; i ++ ) {
        int t = -1;
        //寻找离集合最近的那一条边
        
        for(int j = 1; j <= n; j ++ ) {
            if(!st[j] && (t == -1 || dist[j] < dist[t])) {
                t = j;
            }
        }
     	//如果dist[t] = INF代表没有边连向集合,直接返回    
        if(dist[t] == INF) return INF;
        st[t] = true;
        for(int j = 1; j <= n; j ++ ) {
            dist[j] = min(dist[j], g[t][j]);
        }
        
        res += dist[t];
    }
    
    return res;
}

int main() {
    memset(dist, 0x3f, sizeof(dist));
    memset(st, 0, sizeof st);
    memset(g, 0x3f, sizeof g);
    cin >> n >> m;
    for(int i = 1; i <= m; i ++ ) {
        int a, b, c;
        cin >> a >> b >> c;
        //先去掉自环
        //注意这种都是无向图,所以两个边都需要赋值
        if(a != b) g[a][b] = g[b][a] = min(g[a][b], c);
    }
    
    int ans = prim();
    
    if(ans == INF) cout << "impossible" << endl;
    else cout << ans << endl;
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sheep.ice

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值