题目如下:
给你一个整数数组 nums ,请计算数组的 中心下标 。 * 数组 中心下标 是数组的一个下标,其左侧所有元素相加的和等于右侧所有元素相加的和。 * 如果中心下标位于数组最左端,那么左侧数之和视为 0 ,因为在下标的左侧不存在元素。这一点对于中心下标位于数组最右端同样适用。 * 如果数组有多个中心下标,应该返回 最靠近左边 的那一个。如果数组不存在中心下标,返回 -1 。 * 示例 1: * 输入:nums = [1, 7, 3, 6, 5, 6] * 输出:3 * 解释: * 中心下标是 3 。 * 左侧数之和 sum = nums[0] + nums[1] + nums[2] = 1 + 7 + 3 = 11 , * 右侧数之和 sum = nums[4] + nums[5] = 5 + 6 = 11 ,二者相等。 * 示例 2: * 输入:nums = [1, 2, 3] * 输出:-1 * 解释: * 数组中不存在满足此条件的中心下标。 * 示例 3: * 输入:nums = [2, 1, -1] * 输出:0 * 解释: * 中心下标是 0 。 * 左侧数之和 sum = 0 ,(下标 0 左侧不存在元素), * 右侧数之和 sum = nums[1] + nums[2] = 1 + -1 = 0
整体思路
所谓的中心下标,其实是需要我们找到一个类似于挡板的东西。挡板的左边的和和右边的和相等。 所以,为了让这个问题简单化,我们可以假设这个挡板存在。我们在挡板的左右两边进行计算。当然, 有特殊情况,即第一个数之后或者最后一个数之前的所有数之和为0,所以我们的挡板直接从第一个数组元素开始,最后一个数结束即可解决一个问题,这样就包括了两种特殊的情况了。
代码的实现
public int centerNumber(int[] nums) {
int left = 0;
//left是挡板左边元素的和
int right = 0;
//right是挡板右边元素的和
int i = 0;
//i即为上面提到的挡板
for (;i < nums.length;i++){
left = 0;
right = 0;
//每经过一大轮,我们将左右两边的和初始化
for (int j = 0;j < i;j++){
left += nums[j];
}
//在挡板左边计算和
for (int k = nums.length-1;k > i;k--){
right += nums[k];
}
//在挡板的右边计算和
//在本轮结束后,比较左右的和,
//若相等,则说明找到了这个挡板,返回挡板的下标
if (left == right){
return i;
}
}
return -1;
}
结果如下