登山(线性DP)

文章描述了一个ACM团队登山观光的问题,团队需要按顺序游览海拔不同的景点,且不能连续游览海拔相同的景点。该问题可以通过最长上升子序列的模型解决。代码示例展示了如何从前向后和从后向前遍历,计算每个点作为顶峰时的最大观光数量,最终找到最大可能游览的景点数。
摘要由CSDN通过智能技术生成

题目描述

五一到了,ACM队组织大家去登山观光,队员们发现山上一个有N个景点,并且决定按照顺序来浏览这些景点,即每次所浏览景点的编号都要大于前一个浏览景点的编号。同时队员们还有另一个登山习惯,就是不连续浏览海拔相同的两个景点,并且一旦开始下山,就不再向上走了。队员们希望在满足上面条件的同时,尽可能多的浏览景点,你能帮他们找出最多可能浏览的景点数么?

输入

Line 1: N (2 <= N <= 1000) 景点数 Line 2: N个整数,每个景点的海拔

输出

最多能浏览的景点数

样例输入

8

186 186 150 200 160 130 197 220

样例输出

4

思考

这是一道最长上升子序列模型,队伍只能开始登山,然后再下山

登山的话每次登的山峰高于当前的山峰,下山每次下的山要低于当前山峰

我们选取每个点为顶峰,求得每个顶峰为一次方案的最大观光数量,即可求解

从前往后看,到顶峰也就是最长上升子序列

从后往前看,到顶峰也时最长上升子序列,由此本题可解

代码

#include<iostream>
using namespace std;

const int N = 1010;
int n;
int a[N], f[N], d[N];

int main(){
    scanf("%d", &n);
    
    for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
    
    for(int i = 1; i <= n; i++){
        f[i] = 1;
        for(int j = 1; j < i; j++)
            if(a[i] > a[j]) 
                f[i] = max(f[i], f[j] + 1);
    }
    
    for(int i = n; i >= 1; i --){
        d[i] = 1;
        for(int j = n; j > i; j--)
            if(a[i] > a[j])
                d[i] = max(d[i], d[j] + 1);
    }
    
    int ans = 0;
    for(int i = 1; i <= n; i++){
         ans = max(ans, f[i] + d[i] - 1);   //加了两次,顶峰算了两次
    }
    
    printf("%d", ans);
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Libert_AC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值