题目描述
五一到了,ACM队组织大家去登山观光,队员们发现山上一个有N个景点,并且决定按照顺序来浏览这些景点,即每次所浏览景点的编号都要大于前一个浏览景点的编号。同时队员们还有另一个登山习惯,就是不连续浏览海拔相同的两个景点,并且一旦开始下山,就不再向上走了。队员们希望在满足上面条件的同时,尽可能多的浏览景点,你能帮他们找出最多可能浏览的景点数么?
输入
Line 1: N (2 <= N <= 1000) 景点数 Line 2: N个整数,每个景点的海拔
输出
最多能浏览的景点数
样例输入
8
186 186 150 200 160 130 197 220
样例输出
4
思考
这是一道最长上升子序列模型,队伍只能开始登山,然后再下山
登山的话每次登的山峰高于当前的山峰,下山每次下的山要低于当前山峰
我们选取每个点为顶峰,求得每个顶峰为一次方案的最大观光数量,即可求解
从前往后看,到顶峰也就是最长上升子序列
从后往前看,到顶峰也时最长上升子序列,由此本题可解
代码
#include<iostream>
using namespace std;
const int N = 1010;
int n;
int a[N], f[N], d[N];
int main(){
scanf("%d", &n);
for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
for(int i = 1; i <= n; i++){
f[i] = 1;
for(int j = 1; j < i; j++)
if(a[i] > a[j])
f[i] = max(f[i], f[j] + 1);
}
for(int i = n; i >= 1; i --){
d[i] = 1;
for(int j = n; j > i; j--)
if(a[i] > a[j])
d[i] = max(d[i], d[j] + 1);
}
int ans = 0;
for(int i = 1; i <= n; i++){
ans = max(ans, f[i] + d[i] - 1); //加了两次,顶峰算了两次
}
printf("%d", ans);
return 0;
}