C语言【数据结构】算法的时间复杂度和空间复杂度O()

目录

一.算法效率

1.算法的复杂度

2.复杂度用处

二.时间复杂度

1.概念

2.大O的渐进表示法

3.举例

三.空间复杂度

1.概念

2.举例

四.常见复杂度对比


前言:了解算法的时间复杂度和空间复杂度是学习数据结构的一个基础知识。

练习题:C语言【数据结构】算法复杂度【练习题】(含OJ题、选择题等),以及要注意的知识点_糖果雨滴a的博客-CSDN博客

一.算法效率

1.算法的复杂度

        算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度空间复杂度
        时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

2.复杂度用处

当我们做OJ题时,会经常看到有一些题里要求时间复杂度是O(N),空间复杂度是O(1),当然不只有这两种,还有O(N^2)等。这就需要我们了解时间复杂度和空间复杂度的概念,并且要会计算。

二.时间复杂度

1.概念

        在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。       
 
请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N) 
{
	int count = 0;
	for (int i = 0; i < N; ++i) {
		for (int j = 0; j < N; ++j)
		{
			++count;
		}
	}

	for (int k = 0; k < 2 * N; ++k) {
		++count;
	}
	int M = 10;
	while (M--) {
		++count;
	}
    
    printf("%d\n", count);
}

Func1执行的基本操作次数:F(N) = N^2 + 2 * N + 10

        N = 10                F(N) = 130

        N = 100              F(N) = 10210

        N = 1000            F(N) = 1002010

实际中我们计算时间复杂度时,我们并不需要计算精确的执行次数只需要大概执行次数。这里我们使用大O的渐进表示法

2.大O的渐进表示法

大O符号:是用于描述函数渐进行为的数学符号。
推导大O阶方法:
用常数1取代运行时间中的所有加法常数。
在修改后的运行次数函数中,只保留最高阶项。
如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
使用大O的渐进表示法以后,Func1的时间复杂度为:

        N = 10                F(N) = 100

        N = 100              F(N) = 10000

        N = 1000            F(N) = 1000000

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

3.举例

(1)实例1:

// 计算Func2的时间复杂度?
void Func2(int N) 
{
	int count = 0;
	for (int k = 0; k < 2 * N; ++k)
	{
		++count;
	}
	int M = 10;
	while (M--)
	{
		++count;
	}
	printf("%d\n", count);
}

基本操作执行了2N+10次,通过大O阶得:时间复杂度为O(N)

(2)实例2:

// 计算Func3的时间复杂度?
void Func3(int N, int M) 
{
	int count = 0;
	for (int k = 0; k < M; ++k)
	{
		++count;
	}
	for (int k = 0; k < N; ++k)
	{
		++count;
	}
	printf("%d\n", count);
}

基本操作执行了M+N次,有两个未知数M和N,时间复杂度为O(M+N)

(3)实例3:

// 计算Func4的时间复杂度?
void Func4(int N) 
{
	int count = 0;
	for (int k = 0; k < 100; ++k)
	{
		++count;
	}
	printf("%d\n", count);
}

基本操作执行了100次,通过大O阶得,时间复杂度为O(1)

(4)实例4:

// 计算strchr的时间复杂度?
const char* strchr(const char* str, int character);

基本操作执行 最好情况为1次,最坏情况为N次,时间复杂度一般看最坏情况,时间复杂度O(N)

(5)实例5:

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n) 
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
			break;
	}
}

基本操作执行 最好N次,最坏(N * (N + 1) / 2)次,通过大O阶,得:时间复杂度为O(N^2)

(6)实例6:

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x) 
{
	assert(a);
	int begin = 0;
	int end = n - 1;
	while (begin < end)
	{
		int mid = begin + ((end - begin) >> 1);
		if (a[mid] < x)
			begin = mid + 1;
		else if (a[mid] > x)
			end = mid;
		else
			return mid;
	}
	return -1;
}

基本操作执行 最好1次,最好logN次,时间复杂度为O(logN)

(logN在算法分析中表示底数为2,对数为N)

(7)实例7:

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
	if (0 == N)
		return 1;

	return Fac(N - 1) * N;
}

基本操作递归了N次,时间复杂度为O(N)

(8)实例8:

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N) 
{
	if (N < 3)
		return 1;

	return Fib(N - 1) + Fib(N - 2);
}

基本操作递归了2^N,时间复杂度为O(2^N)

三.空间复杂度

1.概念

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度
空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟时间复杂度类似,也使用大O渐进表示法
注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

2.举例

(1)实例1:

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n) 
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
			break;
	}
}

使用常数个额外空间,空间复杂度为O(1)

(2)实例2:

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n) 
{
	if (n == 0)
		return NULL;

	long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));
	fibArray[0] = 0;
	fibArray[1] = 1;
	for (int i = 2; i <= n; ++i)
	{
		fibArray[i] = fibArray[i - 1] + fibArray[i - 2];
	}
	return fibArray;
}

动态开辟了N + 1个空间,空间复杂度为O(N)

(3)实例3:

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
	if (N == 0)
		return 1;

	return Fac(N - 1) * N;
}

递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间,空间复杂度为O(N)

四.常见复杂度对比

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冰果滴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值