model_compression
文章平均质量分 54
BTU_YC
这个作者很懒,什么都没留下…
展开
-
cfg和模型不对应是否可以迁移学习
而保存的模型跟tzscfg.yaml的模型是一样大小。这说明了当我们需要更小的模型时,可以使用已经训练好的模型来作为预训练权重。cfg使用的是tzscfg.yaml,如果只使用tzscfg而不添加任何预训练模型,保存后的结果是3.4mb左右。训练的时候使用的是yolov5n.pt作为预训练模型,大小为3.8mb左右。从下面map增长的速度来看,预训练权重是起作用的。原创 2023-12-05 17:46:14 · 160 阅读 · 0 评论 -
yolov5使用openvino量化
需要将best_openvino中的.yaml文件copy到量化后的int8_openvino_model中,并重命名为int8.yaml,如果目录中已经有了int8.yaml则不用移动。可以将yolov5中models路径下的common.py里的第700行左右的shape1修改成shape1=[640,640],重新运行。,我将其命名为yolov5_pot_int8.py。原创 2023-12-01 20:29:52 · 786 阅读 · 1 评论 -
yolov5使用openvino量化后的推理速度对比
【代码】yolov5使用openvino量化后的推理速度对比。原创 2023-12-04 12:50:30 · 436 阅读 · 0 评论