代码随想录Day 37|Leetcode|Python|● 1049. 最后一块石头的重量 II ● 494. 目标和 ● 474.一和零

文章介绍了如何通过动态规划方法解决三个IT技术题目:石头重量问题中寻找最小重量的剩余石头,目标和问题中构造满足条件的表达式数量,以及二进制字符串组合求最大子集。涉及零一背包策略和动态规划数组的构建与遍历。
摘要由CSDN通过智能技术生成

 1049. 最后一块石头的重量 II 

有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。

每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:

  • 如果 x == y,那么两块石头都会被完全粉碎;
  • 如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x

最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0

解题思路:

本题思路和零一背包的一维问题相似,将stones尽量分成两个大小类似的list,然后相抵消,所以计算出stones之和再除以2,使用数组填充得到sum//2

  1. 确定dp数组(dp table)以及下标的含义:dp[i]容量为i时最大容量
  2. 确定递推公式:dp[i] = max(dp[i], dp[i-stones[i]]+stones[i])
  3. dp数组如何初始化:dp[0]= 0
  4. 确定遍历顺序:从后向前,从容量为target开始遍历
  5. 举例推导dp数组
class Solution:
    def lastStoneWeightII(self, stones: List[int]) -> int:
        # 确定dp数组(dp table)以及下标的含义
        # 确定递推公式
        # dp数组如何初始化
        # 确定遍历顺序
        # 举例推导dp数组
        target = sum(stones)//2
        dp = [0]*(target+1)
        for i in range(len(stones)):
            for j in range(target, stones[i]-1, -1):
                dp[j] = max(dp[j], dp[j-stones[i]]+stones[i])
        left_sum = sum(stones) - dp[target]
        return abs(dp[target] - left_sum)

 494. 目标和 

给你一个非负整数数组 nums 和一个整数 target 。

向数组中的每个整数前添加 '+' 或 '-' ,然后串联起所有整数,可以构造一个 表达式 :

  • 例如,nums = [2, 1] ,可以在 2 之前添加 '+' ,在 1 之前添加 '-' ,然后串联起来得到表达式 "+2-1" 。

返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

解题思路:

本题进行零一背包问题转换,分为两个子集,加号子集,减号子集。

add + minus = sum

add - minus = target

minus = sum - add

add - (sum - add) = target

add = (target + sum)//2

现在问题变成:使用数组中的数字装满大小为add的背包,有多少种方法?

  1. 确定dp数组(dp table)以及下标的含义:dp[i]当容量为i时有dp[i]种方法
  2. 确定递推公式:dp[j] += dp[j-nums[i]]
  3. dp数组如何初始化:dp[0] = 1
  4. 确定遍历顺序:后序遍历
  5. 举例推导dp数组
class Solution:
    def findTargetSumWays(self, nums: List[int], target: int) -> int:
        if (sum(nums)+target)%2 != 0:
            return 0
        if abs(target)>sum(nums):
            return 0
        target_sum = (sum(nums)+target)//2
        dp = [0]*(target_sum+1)
        dp[0] = 1
        for i in range(len(nums)):
            for j in range(target_sum, nums[i]-1, -1):
                dp[j] += dp[j-nums[i]]
        print(dp)
        return dp[target_sum]

 474.一和零  

给你一个二进制字符串数组 strs 和两个整数 m 和 n 。

请你找出并返回 strs 的最大子集的长度,该子集中 最多 有 m 个 0 和 n 个 1 。

如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。

解题思路:

  1. 确定dp数组(dp table)以及下标的含义:dp[i][j]当容量为i个0,j个1时最大子集的长度
  2. 确定递推公式:dp[i][j] = max(dp[i][j], dp[i-x][j-y]+1),x表示当前string里0的个数,y表示1的个数
  3. dp数组如何初始化:dp[0][0] = 0
  4. 确定遍历顺序:从后向前
  5. 举例推导dp数组

这里要注意m,n的含义,以及在for loop遍历时i,j所对应意义:i对应0的个数,j对应1的个数,有三层循环,第一层是遍历物品即string,第二层是遍历能装0的最大string个数,第三层是遍历能装1的最大string个数,后面两层都是后序遍历,一直到容积为当前最大即zero_num-1和one_num+1为止,更新dp时最重要是理解dp[i-zero_num][j-one_num]+1,即放入当前数后的子串长。

class Solution:
    def findMaxForm(self, strs: List[str], m: int, n: int) -> int:
        # 确定dp数组(dp table)以及下标的含义:dp[i][j]当容量为i个0,j个1时最大子集的长度
        # 确定递推公式:dp[i][j] = max(dp[i][j], dp[i-x][j-y]+1),x表示当前string里0的个数,y表示1的个数
        # dp数组如何初始化:dp[0][0] = 0
        # 确定遍历顺序:从后向前
        # 举例推导dp数组
        dp = [[0]*(n+1) for _ in range(m+1)]
        dp[0][0] = 0
        for string in strs:
            zero_num = string.count('0')
            one_num = len(string) - zero_num
            for i in range(m, zero_num-1, -1):
                for j in range(n, one_num-1, -1):
                    dp[i][j] = max(dp[i][j], dp[i-zero_num][j-one_num]+1)
        return dp[m][n]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值