Python零基础备战24蓝桥杯----二分算法

        二分算法在平时的练习中可以说是比较常使用到的一种算法,使用的前提是必须满足某种属性上的单调才可以使用,并使用该属性来寻找目标值,需要注意的是,不管什么情况下,二分算法肯定会有一个返回的结果值,但该结果值并不一定就是目标结果值,所以就需要对该值进行判断,以防出现错误。(本文只涉及对算法的实现,具体的原理可以参考其他文章,本文不过多展示)

 整数二分

 以下面一题为例进行使用二分算法

给定一个按照升序排列的长度为 n 的整数数组,以及 q 个查询。

对于每个查询,返回一个元素 k 的起始位置和终止位置(位置从 0 开始计数)。

如果数组中不存在该元素,则返回 -1

输入格式

第一行包含整数 n 和 q,表示数组长度和询问个数。

第二行包含 n 个整数(均在 1∼10000 范围内),表示完整数组。

接下来 q 行,每行包含一个整数 k,表示一个询问元素。

输出格式

共 q 行,每行包含两个整数,表示所求元素的起始位置和终止位置。

如果数组中不存在该元素,则返回 -1

数据范围

1≤n≤100000
1≤q≤10000
1≤k≤10000

输入样例:
6 3
1 2 2 3 3 4
3
4
5
输出样例:
3 4
5 5
-1 -1

题解代码如下

if __name__ == '__main__':
    n, q = map(int, input().split())
    arr = list(map(int, input().split()))
    while q > 0:
        q -= 1
        x = int(input())
        l, r = 0, n - 1
        while l < r:
            mid = l + r >> 1
            if arr[mid] >= x:
                r = mid
            else:
                l = mid + 1
        if arr[l] != x:
            print("-1 -1")
            continue
        left = l
        l, r = 0, n - 1
        while l < r:
            mid = l + r + 1 >> 1
            if arr[mid] <= x:
                l = mid
            else:
                r = mid - 1

浮点数二分

给定一个浮点数 n,求它的三次方根。

输入格式

共一行,包含一个浮点数 n。

输出格式

共一行,包含一个浮点数,表示问题的解。

注意,结果保留 6 位小数。

数据范围

−10000≤n≤10000

输入样例:
1000.00
输出样例:
10.000000

 题解如下

if __name__ == '__main__':
    n = float(input())
    st = 0
    if n < 0:
        st = 1
        n = -n
    l, r = 0, 100
    while ((r - l) > 1e-8):
        mid = (l + r) / 2.0
        if (mid**3 >= n): r = mid
        else: l = mid
    if st:
        l = -l
    print("{:.6f}".format(l))

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值