二分算法在平时的练习中可以说是比较常使用到的一种算法,使用的前提是必须满足某种属性上的单调才可以使用,并使用该属性来寻找目标值,需要注意的是,不管什么情况下,二分算法肯定会有一个返回的结果值,但该结果值并不一定就是目标结果值,所以就需要对该值进行判断,以防出现错误。(本文只涉及对算法的实现,具体的原理可以参考其他文章,本文不过多展示)
整数二分
以下面一题为例进行使用二分算法
给定一个按照升序排列的长度为 n 的整数数组,以及 q 个查询。
对于每个查询,返回一个元素 k 的起始位置和终止位置(位置从 0 开始计数)。
如果数组中不存在该元素,则返回 -1
。
输入格式
第一行包含整数 n 和 q,表示数组长度和询问个数。
第二行包含 n 个整数(均在 1∼10000 范围内),表示完整数组。
接下来 q 行,每行包含一个整数 k,表示一个询问元素。
输出格式
共 q 行,每行包含两个整数,表示所求元素的起始位置和终止位置。
如果数组中不存在该元素,则返回 -1
。
数据范围
1≤n≤100000
1≤q≤10000
1≤k≤10000
输入样例:
6 3
1 2 2 3 3 4
3
4
5
输出样例:
3 4
5 5
-1 -1
题解代码如下
if __name__ == '__main__':
n, q = map(int, input().split())
arr = list(map(int, input().split()))
while q > 0:
q -= 1
x = int(input())
l, r = 0, n - 1
while l < r:
mid = l + r >> 1
if arr[mid] >= x:
r = mid
else:
l = mid + 1
if arr[l] != x:
print("-1 -1")
continue
left = l
l, r = 0, n - 1
while l < r:
mid = l + r + 1 >> 1
if arr[mid] <= x:
l = mid
else:
r = mid - 1
浮点数二分
给定一个浮点数 n,求它的三次方根。
输入格式
共一行,包含一个浮点数 n。
输出格式
共一行,包含一个浮点数,表示问题的解。
注意,结果保留 6 位小数。
数据范围
−10000≤n≤10000
输入样例:
1000.00
输出样例:
10.000000
题解如下
if __name__ == '__main__':
n = float(input())
st = 0
if n < 0:
st = 1
n = -n
l, r = 0, 100
while ((r - l) > 1e-8):
mid = (l + r) / 2.0
if (mid**3 >= n): r = mid
else: l = mid
if st:
l = -l
print("{:.6f}".format(l))