题目描述:传说fans是一个数学天才。在他五岁那年,从一堆数字卡片中选出了4张 卡片:5,7,6,8。这4个数字有什么神秘之处呢?如果把这4张卡片自左往右的排成:5,6,7,8。你就会发现:原来这4个数字构成了等差数列!当年 fans选出了n组卡片,据说都能够构成等差数列。但是事实真的是这样吗?fans真的有这么神奇吗? n组数据就是fans选出的n组卡片,请你判断每一组卡片是否能构成等差数列.
分析:
首先回忆一下等差数列的概念:
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。
不妨设该等差数列的通项为an,公差为d;
则公差d=a1-a0;
等差数列满足此后的每一项与它的前一项的差等于同一个常数,也就是公差d。
那么当有任意一项与它的前一项的差与另外不同于该项的项与它自身的前一项的差不同时,则该数列不是等差数列。
那么我们只需逐个判断每一项与它的前一项的差是否等于同一个常数。
“逐个”就需要循环语句,“判断”就需要条件语句。
输入
第一个数为数据的组数n,表示后面有n行,每行中的第一个数为该组数据的元素个数m(1≤m≤100),其后是m个正整数(不会超出int的表示范围)。输出
如果能够构成等差数列,输出“yes”,否则输出“no”。样例输入
2
4 5 7 6 8
8 1 7 3 2 8 12 78 3
样例输出
yes
no
#include<iostream>
using namespace std;
int main()
{
int n,m;
int num[101];
cin>>n;
for(int i=0;i<n;i++)
{
cin>>m;
for(int j=0;j<m;j++)
{
cin>>num[j];
}
//从小到大排序
for(int x=0;x<m-1;x++)
{
for(int y=x+1;y<m;y++)
{
int temp;
if(num[x]>num[y])
{
temp=num[x];
num[x]=num[y];
num[y]=temp;
}
}
}
int d=num[1]-num[0]; //公差d
int flag=1; //等差标志 是等差数列为1,不是为0
//满足等差数列的条件 两个相邻项的差值相等
for(int z=2;z<m-1;z++)
{
//不相等就退出循环
if(num[z+1]-num[z]!=d)
{
flag=0;
break;
}
}
if(flag==0)
{
printf("no\n");
}
else
{
printf("yes\n");
}
}
}