408算法题暴力解法是指通过枚举所有可能的情况来解决问题的方法。这种方法通常会导致时间复杂度较高,但是在一些小规模的问题上仍然是可行的。在考试中,如果没有时间限制,可以使用暴力解法来解决问题。但是在实际应用中,为了提高效率,我们通常会使用更加高效的算法来解决问题。
408代码题一般2-3小问,(1)算法设计思想 (2)代码实现 (3)时间空间复杂度
一般408考虑到得分的正态分布,这一题一般会有最优解、次优解、以及勉强算你写的代码能实现功能。设计思想和复杂度计算和你的代码实现一致,15分的题这几种解法一般分别会有最高15、11、9分左右。
一般次优解都是数据结构的基础知识,加上题目要求实现的功能。主要和排序、树的遍历、链表的应用之一相关。排序的概率最大。
给定一个长度为n的整数序列,你需要找到其中的一个最长上升子序列(LIS),并输出其长度。例如,对于序列{5, 1, 6, 8, 2, 4, 5, 10},其最长上升子序列为{1, 2, 4, 5, 10},长度为5。
解决这个问题的一种常见算法是动态规划。具体来说,我们可以定义一个数组dp,其中dp[i]表示以第i个元素结尾的最长上升子序列的长度。初始时,dp[i]都被赋值为1,因为每个元素本身都可以看作是一个长度为1的上升子序列。然后,我们可以从前往后遍历整个序列,对于每个元素i,我们可以枚举它之前的所有元素j,如果j比i小且dp[j]+1大于dp[i],则更新dp[i]为dp[j]+1。最终,dp数组中的最大值即为所求的最长上升子序列的长度。