CCF-CSP 202104-2 邻域均值

本文介绍了一种使用积分图(二维前缀和)进行优化计算的方法,特别适用于计算以某点为中心的矩形区域内的总和,并确保该总和不超过特定阈值。通过预先计算积分图,可以在常数时间内查询任意矩形区域的总和,从而实现高效的区间求和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

二维有重复计算区间和优化->积分图(前缀和的二维)

注意合理区间计算,每个区间以当前点为中心

通常第一题签到,第二题优化,第三题模拟

#include <bits/stdc++.h>
using namespace std;

int n, l, r, t, integral[605][605], cnt;

int main() {
    scanf("%d %d %d %d", &n, &l, &r, &t);
    for(int i = 1; i <= n; ++i){
        for(int j = 1; j <= n; ++j){
            scanf("%d", &integral[i][j]);
            integral[i][j] += integral[i-1][j] + integral[i][j-1] - integral[i-1][j-1];
        }
    }
    for(int i = 1; i <= n; ++i){
        for(int j = 1; j <= n; ++j){
            int x1 = max(1, i-r), y1 = max(1, j-r), x2 = min(n, i+r), y2 = min(n, j+r);
            int sum = integral[x2][y2] - integral[x1-1][y2] - integral[x2][y1-1] + integral[x1-1][y1-1];
            if(sum <= t*(x2-x1+1)*(y2-y1+1)) ++cnt;  // 除变乘避免精度损失
        }
    }
    cout << cnt;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值