【RSA-Tool 2 by tE】的使用

本文介绍了如何使用在线RSA解密工具,包括判断输入数值的进制、转换素数及生成解密参数,并提供了详细的操作步骤,如从给定条件转换N、D,以及进行加密和解密操作。该工具特别适用于处理大数值时编译器无法运行的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:一般解密RSA需要写脚本,但是由于p,q数值太大,本人的编译器无法运行,后来发现网上一个好用的小工具

  • 1,看给的条件情况,若全是数字就是十进制,有字母试试十六进制
  • 2,此工具的e需转成十六进制 
  • 若条件给了N,点击3可转成素数p,q
  • 因为n=p*q,所以有了p和q就能转成N,点击Cale.D自动生成N,D
  • 最后点击test进行测试
  • 刚开始在M里面输入值,只会有Encrypt(加密)可以点击,随便输个明文后点击EN,此时才能使用Decrypt(解密).
  • 注意密文的进制,若是十六进制应转成十进制

RSA-Tool 2 Copyright ?2000-2002 by tE! [TMG] Introduction Please read this text carefully. This utility has been made for those who want to use the RSA public key algorithm in their own programs. It offers creation of strong keypairs and a nice integer factorization feature which makes use of several differnt factoring methods including the MPQS. It's possible to factor integers +256 bits in size but please keep in mind that this can take a *lot* of memory and time ! Thus it's not recommended to try factoring bigger numbers on slow machines with a few MB of physical Memory. Don't even think of trying to factor 512 bit numbers for example.. RSA-Tool 2 Features: - Secure keypair generation - Key test dialog - Support of multiple number bases - Auto base-conversion on select - Support of numbers up to 4096 Bits 1. About RSA RSA is a Public Key Cryptosystem developed in 1977 by Ronald Rivest, Adi Shamir and Leonard Adleman. Since 09-20-2000 the U.S. Patent #4,405,829 on this Algorithm EXPIRED! That means that the Algorithm is Public Domain now and can be used by everyone for free, even in commercial software. 2. Parameters P = 1st large prime number Q = 2nd large prime number (sizes of P and Q should not differ too much!) E = Public Exponent (a random number which must fulfil: GCD(E, (P-1)*(Q-1))==1) N = Public Modulus, the product of P and Q: N=P*Q D = Private Exponent: D=E^(-1) mod ((P-1)*(Q-1)) Parameters N and E are public whereas D is -private- and must NEVER be published! P and Q are not longer needed after keygeneration and should be destroyed. To obtain D from the public key (N, E) one needs to try splitting N in its both prime factors P and Q. For a large Modulus N (512 bit and more) with carefully chosen primefactors P and Q this is a very difficult problem. All the security of the RSA encryption scheme relies on that integer factorization problem (tough there's no mathematical proof for it). To fin
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值