SAFEFL: MPC-friendly Framework for Private and Robust Federated Learning适用于私有和鲁棒联邦学习的 MPC 友好框架
SAFEFL,这是一个利用安全多方计算 (MPC) 来评估联邦学习 (FL) 技术在防止隐私推断和中毒攻击方面的有效性和性能的框架。
概述
传统机器学习(ML):集中收集数据->隐私保护问题
privacy-preserving ML (PPML)采用的隐私保护技术:安全多方计算,同态加密(运算成本高)
联邦学习(FL):用户本地训练模型,中心聚合器组合结果来更新模型
易受2种攻击:1)隐私推断攻击 2)中毒攻击
- 隐私推断攻击
破坏模型聚合器的对手试图从更新的本地模型/梯度中推断有关用户隐私数据的敏感信息。
对策:安全聚合(SA)技术。用户将加密的本地更新发送到聚合器,聚合器只能访问组合的更新而不是单独的更新。
- 中毒攻击
腐败用户创建欺诈模型并将其发送到聚合器以操纵训练过程。
1)降低模型的准确性,使其无效。2)包含一个后门,当输入中存在特定触发器时,该后门会改变其预测。
对策:鲁棒的聚合方案。目标是从聚合中丢弃可能损坏的本地