SAFEFL: MPC-friendly Framework for Private and Robust Federated Learning论文阅读笔记

本文介绍了一个名为SAFEFL的框架,它结合了安全多方计算(MPC)来提升联邦学习(FL)的隐私保护和对抗中毒攻击的能力。通过分布式聚合器和MP-SPDZ协议,文章探讨了如何在保证隐私的同时实现鲁棒性,以及与现有FL方法的比较和优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SAFEFL: MPC-friendly Framework for Private and Robust Federated Learning适用于私有和鲁棒联邦学习的 MPC 友好框架

SAFEFL,这是一个利用安全多方计算 (MPC) 来评估联邦学习 (FL) 技术在防止隐私推断和中毒攻击方面的有效性和性能的框架。

概述

传统机器学习(ML):集中收集数据->隐私保护问题
privacy-preserving ML (PPML)采用的隐私保护技术:安全多方计算,同态加密(运算成本高)

联邦学习(FL):用户本地训练模型,中心聚合器组合结果来更新模型

易受2种攻击:1)隐私推断攻击 2)中毒攻击

  1. 隐私推断攻击

破坏模型聚合器的对手试图从更新的本地模型/梯度中推断有关用户隐私数据的敏感信息。

对策:安全聚合(SA)技术。用户将加密的本地更新发送到聚合器,聚合器只能访问组合的更新而不是单独的更新。

  1. 中毒攻击

腐败用户创建欺诈模型并将其发送到聚合器以操纵训练过程。
1)降低模型的准确性,使其无效。2)包含一个后门,当输入中存在特定触发器时,该后门会改变其预测。

对策:鲁棒的聚合方案。目标是从聚合中丢弃可能损坏的本地

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值