1 P1616 疯狂的采药
疯狂的采药
题目背景
此题为纪念 LiYuxiang 而生。
题目描述
LiYuxiang
是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同种类的草药,采每一种都需要一些时间,每一种也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”如果你是 LiYuxiang,你能完成这个任务吗?
此题和原题的不同点:
1 1 1. 每种草药可以无限制地疯狂采摘。
2 2 2. 药的种类眼花缭乱,采药时间好长好长啊!师傅等得菊花都谢了!
输入格式
输入第一行有两个整数,分别代表总共能够用来采药的时间 t t t 和代表山洞里的草药的数目 m m m。
第 2 2 2 到第 ( m + 1 ) (m + 1) (m+1) 行,每行两个整数,第 ( i + 1 ) (i + 1) (i+1) 行的整数 a i , b i a_i, b_i ai,bi 分别表示采摘第 i i i
种草药的时间和该草药的价值。输出格式
输出一行,这一行只包含一个整数,表示在规定的时间内,可以采到的草药的最大总价值。
样例 #1
样例输入 #1
70 3
71 100
69 1
1 2
样例输出 #1
140
提示
数据规模与约定
- 对于 30 % 30\% 30% 的数据,保证 m ≤ 1 0 3 m \le 10^3 m≤103 。
- 对于 100 % 100\% 100% 的数据,保证 1 ≤ m ≤ 1 0 4 1 \leq m \le 10^4 1≤m≤104, 1 ≤ t ≤ 1 0 7 1 \leq t \leq 10^7 1≤t≤107,且 1 ≤ m × t ≤ 1 0 7 1 \leq m \times t \leq 10^7 1≤m×t≤107, 1 ≤ a i , b i ≤ 1 0 4 1 \leq a_i, b_i \leq 10^4 1≤ai,bi≤104。
题目解析
完全背包问题。
代码
#include <bits/stdc++.h>
using namespace std;
int T,N;
const int MAX=1e7+5;
int t[10005],v[10005];
long long f[MAX];
int main()
{
cin>>T>>N;
for(int i=1;i<=N;++i)
cin>>t[i]>>v[i];
for(int i=1;i<=N;++i)
{
for(int j=0;j<=T;++j)
{
if(j>=t[i])
f[j]=max(f[j],f[j-t[i]]+v[i]);
}
}
cout<<f[T]<<endl;
return 0;
}
2 P1833 樱花
樱花
题目背景
《爱与愁的故事第四弹·plant》第一章。
题目描述
爱与愁大神后院里种了 n n n 棵樱花树,每棵都有美学值 C i ( 0 ≤ C i ≤ 200 ) C_i(0 \le C_i \le 200) Ci(0≤Ci≤200)。爱与愁大神在每天上学前都会来赏花。爱与愁大神可是生物学霸,他懂得如何欣赏樱花:一种樱花树看一遍过,一种樱花树最多看 A i ( 0 ≤ A i ≤ 100 ) A_i(0 \le A_i \le 100) Ai(0≤Ai≤100) 遍,一种樱花树可以看无数遍。但是看每棵樱花树都有一定的时间 T i ( 0 ≤ T i ≤ 100 ) T_i(0 \le T_i \le 100) Ti(0≤Ti≤100)。爱与愁大神离去上学的时间只剩下一小会儿了。求解看哪几棵樱花树能使美学值最高且爱与愁大神能准时(或提早)去上学。
输入格式
共 n + 1 n+1 n+1行:
第 1 1 1 行:现在时间 T s T_s Ts(几时:几分),去上学的时间 T e T_e Te(几时:几分),爱与愁大神院子里有几棵樱花树 n n n。这里的
T s T_s Ts, T e T_e Te 格式为:hh:mm
,其中 0 ≤ h h ≤ 23 0 \leq hh \leq 23 0≤hh≤23, 0 ≤ m m ≤ 59 0 \leq mm \leq 59 0≤mm≤59,且
h h , m m , n hh,mm,n hh,mm,n 均为正整数。第 2 2 2 行到第 n + 1 n+1 n+1 行,每行三个正整数:看完第 i i i 棵树的耗费时间 T i T_i Ti,第 i i i 棵树的美学值 C i C_i Ci,看第
i i i 棵树的次数 P i P_i Pi( P i = 0 P_i=0 Pi=0 表示无数次, P i P_i Pi 是其他数字表示最多可看的次数 P i P_i Pi)。输出格式
只有一个整数,表示最大美学值。
样例 #1
样例输入 #1
6:50 7:00 3
2 1 0
3 3 1
4 5 4
样例输出 #1
11
提示
100 % 100\% 100% 数据: T e − T s ≤ 1000 T_e-T_s \leq 1000 Te−Ts≤1000(即开始时间距离结束时间不超过 1000 1000 1000 分钟), n ≤ 10000 n \leq 10000 n≤10000。保证 T e , T s T_e,T_s Te,Ts 为同一天内的时间。
样例解释:赏第一棵樱花树一次,赏第三棵樱花树 2 2 2 次。
题目解析、
多重背包与完全背包问题的结合,注意分别处理即可。
代码
#include <bits/stdc++.h>
using namespace std;
struct flower
{
int t,c,p;
}f[10005];
int h1,h2,m1,m2,T,N;
int ans[1005];
int main()
{
scanf("%d:%d %d:%d %d",&h1,&m1,&h2,&m2,&N);
T=(h2-h1)*60+m2-m1;
for(int i=1;i<=N;++i)
scanf("%d %d %d",&f[i].t,&f[i].c,&f[i].p);
for(int i=1;i<=N;++i)
{
if(f[i].p==0)
{
for(int j=0;j<=T;++j)
{
if(j>=f[i].t)
ans[j]=max(ans[j],ans[j-f[i].t]+f[i].c);
}
}
else
{
int sum=f[i].p;
for(int j=1;j<=sum;j*=2)
{
for(int k=T;k>=j*f[i].t;--k)
ans[k]=max(ans[k],ans[k-j*f[i].t]+j*f[i].c);
sum-=j;
}
if(sum>0)
{
int j=sum;
for(int k=T;k>=j*f[i].t;--k)
ans[k]=max(ans[k],ans[k-j*f[i].t]+j*f[i].c);
}
}
}
cout<<ans[T]<<endl;
return 0;
}
3 P1077 [NOIP2012 普及组] 摆花
[NOIP2012 普及组] 摆花
题目描述
小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共 m m m 盆。通过调查顾客的喜好,小明列出了顾客最喜欢的 n n n 种花,从
1 1 1 到 n n n 标号。为了在门口展出更多种花,规定第 i i i 种花不能超过 a i a_i ai
盆,摆花时同一种花放在一起,且不同种类的花需按标号的从小到大的顺序依次摆列。试编程计算,一共有多少种不同的摆花方案。
输入格式
第一行包含两个正整数 n n n 和 m m m,中间用一个空格隔开。
第二行有 n n n 个整数,每两个整数之间用一个空格隔开,依次表示 a 1 , a 2 , ⋯ , a n a_1,a_2, \cdots ,a_n a1,a2,⋯,an。
输出格式
一个整数,表示有多少种方案。注意:因为方案数可能很多,请输出方案数对 1 0 6 + 7 10^6+7 106+7 取模的结果。
样例 #1
样例输入 #1
2 4
3 2
样例输出 #1
2
提示
【数据范围】
对于 20 % 20\% 20% 数据,有 0 < n ≤ 8 , 0 < m ≤ 8 , 0 ≤ a i ≤ 8 0<n \le 8,0<m \le 8,0 \le a_i \le 8 0<n≤8,0<m≤8,0≤ai≤8。
对于 50 % 50\% 50% 数据,有 0 < n ≤ 20 , 0 < m ≤ 20 , 0 ≤ a i ≤ 20 0<n \le 20,0<m \le 20,0 \le a_i \le 20 0<n≤20,0<m≤20,0≤ai≤20。
对于 100 % 100\% 100% 数据,有 0 < n ≤ 100 , 0 < m ≤ 100 , 0 ≤ a i ≤ 100 0<n \le 100,0<m \le 100,0 \le a_i \le 100 0<n≤100,0<m≤100,0≤ai≤100。
NOIP 2012 普及组 第三题
题目解析
动态规划问题。
代码
#include <bits/stdc++.h>
using namespace std;
const int mod=1e6+7;
int n,m;
int mp[101],f[101][101];
int main()
{
cin>>n>>m;
for(int i=1;i<=n;++i)
cin>>mp[i];
f[0][0]=1;
for(int i=1;i<=n;++i)
{
for(int j=0;j<=m;++j)
{
for(int k=0;k<=min(j,mp[i]);++k)
f[i][j]=(f[i][j]+f[i-1][j-k])%mod;
}
}
cout<<f[n][m]<<endl;
return 0;
}
4 P1064 [NOIP2006 提高组] 金明的预算方案
[NOIP2006 提高组] 金明的预算方案
题目描述
金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过
n n n 元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:
如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有 0 0 0 个、 1 1 1 个或 2 2 2
个附件。每个附件对应一个主件,附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的 n n n
元。于是,他把每件物品规定了一个重要度,分为 5 5 5 等:用整数 1 ∼ 5 1 \sim 5 1∼5 表示,第 5 5 5
等最重要。他还从因特网上查到了每件物品的价格(都是 10 10 10 元的整数倍)。他希望在不超过 n n n
元的前提下,使每件物品的价格与重要度的乘积的总和最大。设第 j j j 件物品的价格为 v j v_j vj,重要度为 w j w_j wj,共选中了 k k k 件物品,编号依次为
j 1 , j 2 , … , j k j_1,j_2,\dots,j_k j1,j2,…,jk,则所求的总和为:v j 1 × w j 1 + v j 2 × w j 2 + ⋯ + v j k × w j k v_{j_1} \times w_{j_1}+v_{j_2} \times w_{j_2}+ \dots +v_{j_k} \times w_{j_k} vj1×wj1+vj2×wj2+⋯+vjk×wjk。
请你帮助金明设计一个满足要求的购物单。
输入格式
第一行有两个整数,分别表示总钱数 n n n 和希望购买的物品个数 m m m。
第 2 2 2 到第 ( m + 1 ) (m + 1) (m+1) 行,每行三个整数,第 ( i + 1 ) (i + 1) (i+1) 行的整数 v i v_i vi, p i p_i pi, q i q_i qi 分别表示第
i i i 件物品的价格、重要度以及它对应的的主件。如果 q i = 0 q_i=0 qi=0,表示该物品本身是主件。输出格式
输出一行一个整数表示答案。
样例 #1
样例输入 #1
1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0
样例输出 #1
2200
提示
数据规模与约定
对于全部的测试点,保证 1 ≤ n ≤ 3.2 × 1 0 4 1 \leq n \leq 3.2 \times 10^4 1≤n≤3.2×104, 1 ≤ m ≤ 60 1 \leq m \leq 60 1≤m≤60, 0 ≤ v i ≤ 1 0 4 0 \leq v_i \leq 10^4 0≤vi≤104, 1 ≤ p i ≤ 5 1 \leq p_i \leq 5 1≤pi≤5, 0 ≤ q i ≤ m 0 \leq q_i \leq m 0≤qi≤m,答案不超过 2 × 1 0 5 2 \times 10^5 2×105。
题目解析
把附件依附于主件处理,先只处理主件,就是一个01背包问题,然后在处理某个主件时,再将附件与其绑定处理。
代码
#include <bits/stdc++.h>
using namespace std;
struct thing
{
int v, p, q;
};
int n, m;
int v, p, q;
thing zhu[65];
thing ci[65][2];
int f[32005];
int main()
{
cin >> n >> m;
n = n / 10 * 10;
for (int i = 1; i <= m; ++i)
{
scanf("%d %d %d", &v, &p, &q);
zhu[i].v = v;
zhu[i].p = p;
zhu[i].q = q;
if (q != 0)
{
if (ci[q][0].p == 0 && ci[q][0].v == 0)
{
ci[q][0].v = v;
ci[q][0].p = p;
}
else
{
ci[q][1].v = v;
ci[q][1].p = p;
}
}
}
for (int i = 1; i <= m; ++i)
{
if (zhu[i].q == 0)
{
for (int j = n; j >= zhu[i].v; j -= 10)
{
f[j] = max(f[j], f[j - zhu[i].v] + zhu[i].v * zhu[i].p);
if (j >= zhu[i].v + ci[i][0].v)
f[j] = max(f[j], f[j - zhu[i].v - ci[i][0].v] + zhu[i].v * zhu[i].p + ci[i][0].v * ci[i][0].p);
if (j >= zhu[i].v + ci[i][1].v)
f[j] = max(f[j], f[j - zhu[i].v - ci[i][1].v] + zhu[i].v * zhu[i].p + ci[i][1].v * ci[i][1].p);
if (j >= zhu[i].v + ci[i][0].v + ci[i][1].v)
f[j] = max(f[j], f[j - zhu[i].v - ci[i][0].v - ci[i][1].v] + zhu[i].v * zhu[i].p + ci[i][0].v * ci[i][0].p + ci[i][1].v * ci[i][1].p);
}
}
}
cout << f[n] << endl;
return 0;
}