0x03 前缀和与差分

本文介绍了数组的前缀和概念,展示了如何通过递推求解并利用它计算部分和。同时,阐述了差分的概念,以及前缀和与差分之间的互逆关系,以及它们在区间操作转换为单点操作中的应用价值。
摘要由CSDN通过智能技术生成

0x03 前缀和与差分

1.前缀和

对于一个给定的数组A,它的前缀和数列S是通过递推能求出的基本信息之一:
S [ i ] = ∑ j = 1 i A [ j ] S [ i ] = S [ i − 1 ] + A [ i ] S[i]=\sum_{j=1}^iA[j] \\ S[i]=S[i-1]+A[i] S[i]=j=1iA[j]S[i]=S[i1]+A[i]
一个部分和,即数列A某个下标区间内数的和,可以表示为前缀和相减的形式:
s u m ( l , r ) = ∑ i = l r A [ i ] = S [ r ] − S [ l − 1 ] sum(l,r)=\sum_{i=l}^{r}A[i]=S[r]-S[l-1] sum(l,r)=i=lrA[i]=S[r]S[l1]
在二维数组(矩阵)中,可类似求出二维前缀和,进一步计算出二维部分和。
S [ i ] [ j ] = ∑ x = 1 i ∑ y = 1 j A [ x ] [ y ] S [ i ] [ j ] = S [ i − 1 ] [ j ] + S [ i ] [ j − 1 ] − S [ i − 1 ] [ j − 1 ] + A [ i ] [ j ] S[i][j]=\sum_{x=1}^{i}\sum_{y=1}^{j}A[x][y] \\ S[i][j]=S[i-1][j]+S[i][j-1]-S[i-1][j-1]+A[i][j] S[i][j]=x=1iy=1jA[x][y]S[i][j]=S[i1][j]+S[i][j1]S[i1][j1]+A[i][j]
前缀和可以求出某个固定长度区间里的最值

2.差分

给定一个数列A,它的差分数列B定义为:
B [ 1 ] = A [ 1 ] , B [ i ] = A [ i ] − A [ i − 1 ] ( 2 ≤ i ≤ n ) B[1]=A[1],B[i]=A[i]-A[i-1](2\le i\le n) B[1]=A[1],B[i]=A[i]A[i1](2in)
“前缀和”与“差分”是一对互逆运算,差分序列B的前缀和序列是原数列A,前缀和序列S的差分序列也是原序列。

序列A的区间[l,r]所有数加上d,其差分序列变化为 B l + d B_l+d Bl+d B r + 1 − d B_{r+1}-d Br+1d,其他位置不变,把“区间操作”变化为“单点操作”,降低求解难度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谷神星ceres

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值