当您看到这篇文章时想必您已经完成了模型训练,这里以YOLOv11训练出来的pt模型为例给出模型在K230开发板的部署流程
环境:windows11,ubuntu20.04(已安装python,pip),nncase2.9.0,K230开发板
1、模型转换
将pt格式转化为onnx格式以便使用nncase工具链进行模型转换
from ultralytics import YOLO
# 加载一个模型,路径为 YOLO 模型的 .pt 文件
model = YOLO("ultralytics-main/runs/detect/train11/weights/best.pt")
# 导出模型,设置多种参数
model.export(
format="onnx", # 导出格式为 ONNX
imgsz=(320, 320), # 设置输入图像的尺寸
keras=False, # 不导出为 Keras 格式
optimize=True,
int8=True, # 启用 INT8 量化
dynamic=False, # 不启用动态输入尺寸
simplify=True, # 简化 ONNX 模型
opset=None, # 使用最新的 opset 版本
workspace=4.0, # 为 TensorRT 优化设置最大工作区大小(