- 博客(2)
- 收藏
- 关注
原创 AI大语言模型原理与局限性
通过概率生成与通过逻辑推理生成有着本质区别,打个比方,让AI大语言模型去做数学题,它不是算出来的,而是“猜”出来的,这种“猜”更像是人类没有经过思考的经验直觉,是无法理解的“黑箱”。通过概率生成意味着需要通过大量的数据训练获得概率,这个过程会消耗大量的数据与算力,据估计高质量文本在2026年就会枯竭[9],与之相比人脑所消耗的数据与算力几乎可以忽略不计,也就是说,AI大语言模型通过更多数据更多算力获得更好的生成结果的发展方向是不可持续的,并且也与人脑的作用机理相悖。# AI大语言模型的局限性。
2024-06-14 20:36:54 834
原创 链栈实现表达式求值(多位数版本)
'#')) //表达式没有扫描完毕或OPTR的栈顶元素不为“#”(未运算完毕)switch (Precede(GetTop(OPTR).value1, ch.value1)) //比较OPTR的栈顶元素和ch的优先级。float EvaluateExpression() {//算术表达式求值的算符优先算法,设OPTR和OPND分别为运算符栈和操作数栈。case '=': //OPTR的栈顶元素是“(”且ch是“)”bool isOPRT(char ch) {//判断ch是否为运算符。
2024-06-06 21:25:16 504
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人