CINTA1

判断偶数的函数
bool is_even(int a) {
	return (a & 1) == 0;
}

按位与是将两个数转化为二进制,若对应的位两数都为1,则结果中该位位1,否则该位为0.

此数如果与1进行按位与运算,奇数转化为二进制后最后一位肯定为1,其余为肯定为0,也就是十进制中的1

迭代版本的乘法
int multiply(int a, int b) {
	if (b == 0) return 0;
	if ((b & 1) == 0) return 2 * multiply(a, b / 2);
	if ((b & 1) == 1) return 2 * multiply(a, b / 2) + a;
}

利用递归进行迭代版本的乘法,例如3*5,运算过程中将3分别×21,22,23,即3,6,12。再将5转化为二进制数101,然后进行3*1+6*0+12*1的运算,结果为15

整除性的证明
1.

∵ \because a ∣ \mid b b ∣ \mid c

∴ \therefore b= k 1 k_1 k1a c= k 2 k_2 k2b

∴ \therefore c= k 1 k_1 k1 k 2 k_2 k2a

∴ \therefore ∃ \exists q ′ \prime = k 1 k_1 k1 k 2 k_2 k2 使得 c=q ′ \prime a

即a ∣ \mid c

2.

∵ \because c ∣ \mid a c ∣ \mid b

∴ \therefore a= k 1 k_1 k1c b= k 2 k_2 k2c

∴ \therefore (a+b)= k 1 k_1 k1c+ k 2 k_2 k2c

∴ \therefore (ma+nb)=m k 1 k_1 k1c+n k 2 k_2 k2c=(m k 1 k_1 k1+n k 2 k_2 k2)c

即对 ∀ \forall m,n,总 ∃ \exists q=m k 1 k_1 k1+n k 2 k_2 k2,使得(ma+nb)=qc

∴ \therefore c ∣ \mid (ma+nb)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值