cinta作业1

1. 用 C 语言编程实现一种迭代版本的简单乘法

#include<iostream>
using namespace std;
int multiply(int a,int b);
 
int main()
{
	int a,b;
	cout<<"输入两个数:";
	cin>>a>>b;
	cout<<"结果:"<<multiply(a,b);	
}

int multiply(int a,int b)
{
	int sum=0;
	while(b!=0)
	{
		if(b&1==1)
		{
			sum+=a; 
		}
		b>>=1; 
		a<<=1;
	}
	return sum;
}

2.证明命题1.1。

在这里插入图片描述

下面将分别证明命题的前一句话和后一句话

证明1:

∵ a ∣ b , b ∣ c ∴ 存 在 唯 一 整 数 p , q 使 得 b = a p − ( 1 ) c = b q − ( 2 ) 将 ( 1 ) 式 代 入 ( 2 ) 式 , 可 得 c = a ∗ p q 又 ∵ p , q ∈ Z ∴ p q ∈ Z ∴ a ∣ c \because a\mid b ,b\mid c \\ \therefore 存在唯一整数p,q使得 \\ b=ap -(1) \newline c=bq-(2) \newline 将(1)式代入(2)式,可得 \newline c=a *pq \newline 又 \because p,q \in \mathbb{Z} \\\therefore pq \in \mathbb{Z} \\\therefore a\mid c abbcpq使b=ap(1)c=bq(2)(1)(2)c=apqp,qZpqZac

证明2:

∵ c ∣ a , c ∣ b ∴ 存 在 唯 一 整 数 p , q 使 得 a = c p − ( 1 ) b = c q − ( 2 ) 将 ( 1 ) 、 ( 2 ) 式 代 入 c ∣ ( m a + n b ) 可 得 c ∣ ( m p + n q ) c 又 ∵ p , q , m , n ∈ Z ∴ ( m p + n q ) ∈ Z ∴ c ∣ ( m a + n b ) \because c\mid a ,c\mid b \\ \therefore 存在唯一整数p,q使得 \\ a=cp-(1) \\ b=cq-(2) \newline 将(1)、(2)式代入 c\mid (ma+nb) \\ 可得 c\mid (mp+nq)c \newline 又 \because p,q ,m,n\in \mathbb{Z} \\\therefore (mp+nq) \in \mathbb{Z} \\\therefore c\mid (ma+nb) cacbpq使a=cp(1)b=cq(2)(1)(2)c(ma+nb)c(mp+nq)cp,q,m,nZ(mp+nq)Zc(ma+nb)

3.完成定理1.1的证明(除法算法)

在这里插入图片描述

分别证明其存在性和唯一性

存在性证明

构造集合
S = { a − b k : k ∈   Z 且 a − b k ≥ 0 } S= \left\{a-bk:k\in\ \mathbb{Z} 且a-bk\geq 0\right\} S={abk:k Zabk0}
显然,集合为非空,由良序原则,存在一个最小元 r ∈ S r\in S rS,且 r = a − q b r=a-qb r=aqb。因此有 a = q b + r , r ≥ 0 a=qb+r,r\geq 0 a=qb+r,r0

接下来证明 r < b r<b r<b。我们假设 r ≥ b r\geq b rb,则当 k = q + 1 k=q+1 k=q+1 时, 则有 a − b ( q + 1 ) = r − b ≥ 0 a-b(q+1)=r-b\geq 0 ab(q+1)=rb0,这表明 a − b ( q + 1 ) ∈ S a-b(q+1)\in S ab(q+1)S,而又因为 a − b ( q + 1 ) < a − b q a-b(q+1)<a-bq ab(q+1)<abq,而 r = a − b q r=a-bq r=abq,这与 r r r S S S中最小元素的定义矛盾,因此假设不成立,则有 r < b r< b r<b,存在性证毕。

唯一性证明

假设还存在整数 r ′ , q ′ r',q' rq,使得 a = q ′ b + r ′ , 0 ≤ r ′ ≤ b a=q'b+r',0\leq r'\leq b a=qb+r,0rb
则有 q b + r = q ′ b + r ′ qb+r=q'b+r' qb+r=qb+r,转化则有 b ( q ′ − q ) = r ′ − r b(q'-q)=r'-r b(qq)=rr,假设 r ′ ≥ r r'\geq r rr,则有 0 ≤ r ′ − r ≤ r ′ < b 0\leq r'-r\leq r'<b 0rrr<b
而又因为 q ′ − q ∈ Z q'-q\in \mathbb{Z} qqZ ,则 b ( q ′ − q ) ∈ ( b , + ∞ ) ∩ ( − ∞ , − b ) ∩ 0 b(q'-q)\in(b,+\infty )\cap(-\infty,-b)\cap0 b(qq)(b,+)(,b)0,即有 r ′ − r ∈ ( b , + ∞ ) ∩ ( − ∞ , − b ) ∩ 0 r'-r\in(b,+\infty )\cap(-\infty,-b)\cap0 rr(b,+)(,b)0。要想使 r ′ − r r'-r rr同时满足上面两个式子,当且仅当 r ′ = r r'=r r=r,此时也有 q ′ = q q'=q q=q,唯一性证毕。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GOAT_0x02

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值