LeetCode题目:爬楼梯

该问题是一个经典的动态规划问题,代码通过维护前两个台阶的方案数,动态计算出当前台阶的方案数。当n等于1或2时,方案数即为n。对于n大于2的情况,每一步都可以从上一步或上两步到达,因此通过递推公式n3=n1+n2更新状态,最终返回n1作为答案。
摘要由CSDN通过智能技术生成

题目描述:

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:

输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
 

提示:

1 <= n <= 45

代码如下:

class Solution(object):
    def climbStairs(self, n):
        """
        :type n: int
        :rtype: int
        """
        self.n=n
        n1=1
        n2=2
        if self.n==n1 or self.n==n2:
            return self.n
        for i in range(self.n-1):
            n3=n1+n2
            n1=n2
            n2=n3
        return n1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值